
EventBreak: Analyzing the Responsiveness of User
Interfaces through Performance-Guided Test Generation

Michael Pradel Parker Schuh George Necula Koushik Sen
EECS Department

University of California, Berkeley

Abstract
Event-driven user interface applications typically have a sin-
gle thread of execution that processes event handlers in re-
sponse to input events triggered by the user, the network,
or other applications. Programmers must ensure that event
handlers terminate after a short amount of time because oth-
erwise, the application may become unresponsive. This pa-
per presents EventBreak, a performance-guided test genera-
tion technique to identify and analyze event handlers whose
execution time may gradually increase while using the ap-
plication. The key idea is to systematically search for pairs
of events where triggering one event increases the execution
time of the other event. For example, this situation may hap-
pen because one event accumulates data that is processed by
the other event. We implement the approach for JavaScript-
based web applications and apply it to three real-world appli-
cations. EventBreak discovers events with an execution time
that gradually increases in an unbounded way, which makes
the application unresponsive, and events that, if triggered re-
peatedly, reveal a severe scalability problem, which makes
the application unusable. The approach reveals two known
bugs and four previously unknown responsiveness problems.
Furthermore, we show that EventBreak helps in testing that
event handlers avoid such problems by bounding a handler’s
execution time.

Categories and Subject Descriptors D.2.5 [Software En-
gineering]: Testing and Debugging; D.2.8 [Software Engi-
neering]: Metrics

Keywords Web applications; Testing; Test generation; Re-
sponsiveness; Performance
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1. Introduction
Any event-driven user interface application, such as a web
application or an application running on mobile devices,
should react quickly to events triggered by the user. Such
applications typically have a single thread of execution that
processes event handlers. For example, the JavaScript exe-
cution model implemented in popular web browsers has an
event dispatcher that takes event handlers from a queue and
dispatches them to a single thread of execution. While an
event handler is executing, the browser does not react on
user input. Therefore, developers of web applications must
ensure that each event handler terminates quickly, for ex-
ample, by ensuring that the execution time cannot exceed
particular bounds.

If an event handler runs too long, the application is per-
ceived as unresponsive. To deal with this problem, platforms
for event-driven applications monitor event handlers and ask
the user to interrupt long-running handlers. For example,
Firefox and the Android platform show a pop-up if an event
handler runs longer than a maximum execution time and ask
the user to force-stop the script and application, respectively.
Developers are highly motivated to avoid this situation be-
cause users may perceive it as a crash-like termination of the
program. Unfortunately, performance problems are common
in event-driven applications and many of them lead to unre-
sponsive applications [22].

As a motivating example, consider a bug in the Joomla
content management system, a complex web application
used by various popular web sites.1 The administrative in-
terface of a Joomla-based web site allows for adding menu
items to the site, and it provides a way to set properties of en-
tire menus. The event handler triggered when changing the
properties of a menu validates the names of all menu items
every time it is called. This validation is computationally
expensive and therefore, the execution time of the handler
increases quickly when a user adds more menu items. For
web sites with a large number of menu items, this behav-
ior makes Joomla’s administrative interface unresponsive.

1 http://www.joomla.org



Users of Joomla have reported this problem, and it has been
addressed by the developers.2

Traditional manual testing is very unlikely to discover
this problem because the application becomes unresponsive
only after repeatedly executing a particular sequence of in-
put events. This sequence involves creating a menu item and
saving the properties of the corresponding menu, as well as
other events needed to navigate between pages that allow
for triggering these events. Even if a test triggers this se-
quence, the responsiveness problem may easily be missed
because the execution time of the buggy event handler in-
creases gradually. Furthermore, testing is often optimized for
increasing code coverage, whereas here we need tests that
persist in one area of the code long enough to spot perfor-
mance trends. A brute-force search for event sequences that
trigger responsiveness problems is prohibitive, since real-
world web applications typically involve hundreds of pages,
each having hundreds of possible events to trigger.

This paper addresses the problem of analyzing the re-
sponsiveness of event-driven applications through auto-
mated testing. We present EventBreak, a performance-
guided test generation technique that exercises a web ap-
plication by creating sequences of user input events, such
as clicking on DOM elements, scrolling, and filling forms.
The key idea is to leverage measured performance of event
handlers to steer the test generation towards potential re-
sponsiveness problems. EventBreak identifies pairs of events
that, if triggered alternately, may eventually make the appli-
cation unresponsive because triggering one event increases
the execution time of the other event. We call such a pair of
events a slowdown pair. The test generator systematically
analyzes potential slowdown pairs by repeatedly navigating
between the two events with the help of an inferred, approx-
imate finite-state model of the application. The output of
EventBreak is a set of cost plots that show how the execution
time of one event changes as a result of triggering another
event. Developers can use these plots to check whether event
handlers scale as expected and to identify handlers with an
increasing and potentially unbounded cost.

We envision two usage scenarios of our approach. First,
it can serve as a fully automated testing technique. In this
scenario, EventBreak starts by randomly exploring the ap-
plication under test for potential responsiveness problems,
and then targets the exploration toward potential slowdown
pairs discovered during the random exploration. Second, the
approach can leverage existing tests or usage traces. In this
scenario, EventBreak exploits the available information by
inferring potential slowdown pairs and by analyzing them in
more detail. That is, the approach amplifies existing testing
efforts while focusing on potential responsiveness problems.

To the best of our knowledge, this paper is the first to
address responsiveness problems in event-driven applica-
tion through performance-guided test generation. The clos-
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est existing work falls into two categories. On the one hand,
there are test generation approaches for event-driven appli-
cations [2, 3, 6, 16, 27, 33, 34]. They aim for high coverage
of the application’s source code, which is an appropriate goal
for discovering correctness problems, but it does not neces-
sarily expose responsiveness problems. On the other hand,
there are static [17, 22] and dynamic [30, 35, 38, 40] analy-
ses to detect performance problems. These analyses focus on
particular root causes of problems and do not address event-
driven applications. In contrast to existing work, EventBreak
focuses on the cost of event handlers in event-driven appli-
cations and systematically analyzes an application’s respon-
siveness.

We evaluate EventBreak with three real-world web appli-
cations and show that the approach detects slowdown pairs
that correspond to responsiveness problems. EventBreak de-
tects two known bugs and four previously unknown respon-
siveness problems. The slowdown pairs include a problem
in Joomla that makes the application unresponsive, and a
problem in Drupal that crashes the application and therefore
makes it unusable. The targeted test generation effectively
explores potential slowdown pairs despite using an approxi-
mate model of the application. On average, EventBreak suc-
cessfully triggers 89% of all target events it tries to trigger
when exploring slowdown pairs, while taking only 33 events
to reach a state where a target event can be triggered.

In summary, this paper contributes the following:

• The first automated testing technique for analyzing the
responsiveness of event-driven user interface applica-
tions.

• Algorithms that leverage measured performance to gen-
erate test input sequences that steer an application toward
events with gradually increasing cost.

• Empirical results that show that the approach scales to
real-world web applications and that it provides insights
about the performance and responsiveness of these appli-
cations.

2. Motivating Example and Overview
The following section motivates our work by elaborating on
the motivating example mentioned in Section 1 and provides
an overview of our approach. The example application is the
administrative interface of the Joomla content management
system. The administrative interface is used to manage web
sites build upon Joomla. For illustration purposes, we sim-
plify the application and the example.

Figure 1a illustrates different states of the web application
and how states can be reached from other states by trigger-
ing events. Lightgray boxes represent states and arrows show
how triggering an event leads to another state. In the exam-
ple, state S1 is the initial state of the application. By clicking
on the “Menu Items” button (eventE1), the user gets to state
S2. Here, the application lists all menu items and provides
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(a) Application states and events.

1 // validate.js: Validate form fields
2 var elements = form.getElements(’fieldset’)
3 .concat(Array.from(form.elements));
4 for (var i=0;i < elements.length; i++) {
5 if (this.validate(elements[i]) == false) {
6 valid = false;
7 }
8 }

(b) Code from Joomla that is executed when saving
the menu (event E6).

Figure 1. Motivating example (simplified version of Joomla Issue 30274).

a button for creating a new menu item (event E2). Click-
ing this button leads to state S3, where the user can choose a
name for the new menu item by inserting text into a text field
(event E3). Once the text field is filled, the application is at
state S4, where the user can save the menu item and get back
to state S1 (event E4). Instead of adding new menu items,
the user can also modify the properties of the entire menu
by clicking “Menu” in S1 (event E5), which leads to S5.
At S5, the user can save the menu and return to S1 (event
E6). The figure omits many more states and events. In par-
ticular, the user can reach most states from any other state by
directly accessing the corresponding URL, as illustrated by
event E7.

The application has a responsiveness problem because the
execution time of event E6 increases whenever event E4
is triggered. Figure 1b shows an excerpt of the JavaScript
code that handles event E6. The code validates that all form
fields related to the menu contain correct values. The array
elements contains, among other entries, one entry for each
menu item of the menu. Unfortunately, the number of menu
items is unbounded and the code in Figure 1b does not bound
the number of iterations. As a result, the execution time of
the code in Figure 1b grows whenever the user adds a new
menu item. This unbounded growth makes the application
unresponsive when E6 is triggered while having a large
number of menu items.

There are three typical ways to fix such a problem. First,
the developers can bound the amount of computation done
in a single handler. In the example, one might split the
elements array into chunks and handle each in a separate
handler, so the browser can react to other events between
executing these handlers. Second, an application can bound
the number of data items that can exist in the system. For
example, the Joomla developers may limit the maximum
number of menu items. Third, the developers can modify
the application logic so that triggering one event does not
directly influence the execution time of handling another

event. The Joomla developers fix the example bug using the
third approach by adding a cache that avoids re-validating
menu items when the menu is saved.

EventBreak discovers this responsiveness problem in two
phases. In the first phase, EventBreak observes an execution
of the application and records the cost associated with each
triggered event. We measure the cost of an event as the num-
ber of conditionals that are evaluated during its execution.
For example, the approach may record several occurrences
of E4 and E6 and their respective costs. EventBreak ana-
lyzes the recorded costs and infers that triggering E4 poten-
tially increases the cost of executing E6.

In the second phase, EventBreak further explores the po-
tential dependence between E4 and E6 by generating a se-
quence of input events that alternately triggers E4 and E6.
To address the problem that triggering one event directly af-
ter the other may not be possible, the approach uses an in-
ferred finite state model of the application [21], similar to the
model shown in Figure 1a. Based on the model, EventBreak
searches for short paths between those states that allow for
triggering E4 and E6, respectively, and repeatedly follows
these paths. For example, EventBreak may repeatedly exe-
cute the event sequenceE1−E2−E3−E4−E5−E6. Our
approach addresses the challenge that the inferred model ap-
proximates the application, and that the shortest path in the
inferred model may not be feasible in the application. To
address this challenge, the approach considers not only the
shortest path but also longer paths, and it randomizes the
search for paths. After exploring the dependence between
E4 andE6, EventBreak finally reports a cost plot that shows
that E6’s cost increases linearly when triggering E4.

3. Definitions and Problem Statement
In the following, we define the most important terms used
throughout the paper, and we specify the problem that we
are addressing.



3.1 Definitions
The basic unit of computation in event-driven programs is
an event handler. This paper considers JavaScript-based web
applications and identifies events as follows:

Definition 1 (Event)
An event is a tuple (d, t, s, s′), where

• d is an identifier of the DOM element on which the event
is dispatched

• t is the type of event
• s is the state of the application before triggering the event
• s′ is the state of the application after the event has been

triggered

As the identifier d, we use the XPath of a DOM element,
which uniquely identifies an element, such as a button, on
a page. The type t of an event indicates what kind of user
input the event refers to. For example, the type can be click
or mouseover. The states s and s′ refer to an abstraction of
the web application’s state. For our experiments, we use the
document title and the URL of the current page to abstract
the page’s state. URLs give a reasonable state abstraction
for applications that use “deep linking”, that is, the URL
reflects enough of the state to bring a user back to the same
state. Finding a reasonable state abstraction for a particular
web application is a problem orthogonal to this work [24,
34]. In addition to events dispatched on DOM elements,
EventBreak supports several special events, such as scrolling
the page and going back to a previously seen URL. To go
back to previously seen URLs, EventBreak keeps track of
the referrer URL whenever a link leads to a new page and
creates a “back to referrer” event for each observed referrer.

Triggering an event causes the execution of its event han-
dler. We measure the cost of handling an event as follows:

Definition 2 (Cost of event handling)
The cost c(e) of executing the handler of an event e is the
number of conditionals evaluated as a result of triggering e.

This definition considers a logical cost of handling an
event. Instead, we could measure the actual cost on the
client machine, for example, the handler’s wallclock exe-
cution time. The rationale for preferring a logical cost is
to avoid problems related to accurately measuring machine-
level performance [8, 11, 29].

3.2 Problem Statement
The problem we address in this paper is analyzing the re-
sponsiveness of event-driven applications. To this end, we
search for pairs of events where triggering one event in-
creases the cost of executing another event.

Definition 3 (Slowdown pair)
A slowdown pair (ecause, eeffect) consist of an event ecause
and an event eeffect, where for any sequence eeffect, ..,

ecause, .., eeffect, the cost of the second eeffect is larger
than the cost of the first.

As illustrated in Section 2, such pairs of events may cor-
respond to responsiveness problems that developers should
address. In addition to revealing responsiveness problems,
searching for slowdown pairs is useful for testing that mech-
anisms to avoid long-running event handlers work as ex-
pected.

We focus on pairs of events for two reasons. First, in a
preliminary study of real-world responsiveness bugs, we no-
tice several bugs that show up if two particular events are
repeated alternately. Second, analyzing pairs of events re-
duces the search space to a manageable size, even for com-
plex web applications. If we instead analyze whether arbi-
trary sequences of events expose responsiveness problems,
the number of possible sequences becomes too large to ex-
plore in practice.

4. Performance-Guided Test Generation
This section presents our approach to find and explore slow-
down pairs in complex web applications through automated,
targeted test generation. EventBreak consist of two main
phases:

1. The first phase explores the application to record a trace
of events and their respective cost (Section 4.1). By de-
fault, the first phase of EventBreak loads a web site and
explores it by randomly triggering events. As an alter-
native, EventBreak can build upon existing testing ef-
forts and use a trace obtained from executing a test suite
or from usage traces recorded from real users. The ap-
proach leverages the trace to infer potential slowdown
pairs (Section 4.2).

2. The second phase systematically explores potential slow-
down pair by experimentally evaluating the hypothe-
sis that a given pair of events is indeed a slowdown
pair (Section 4.3). To explore a potential slowdown pair
(ecause, eeffect), EventBreak triggers the two events of
the pair in an alternating way and analyzes how the cost
of eeffect changes over time. We observe the problem
that triggering a particular event may only be possible
in a particular state. EventBreak addresses this problem
by using an inferred finite-state model of the application
and by using the model to reach a state where the desired
event can be triggered. If EventBreak finds evidence that
a potential slowdown pair is indeed a slowdown pair, it
summarizes the pair into a cost plot. This plot shows the
cost of eeffect as a function of the number of times that
ecause has been triggered (Section 4.4).

4.1 Gathering Performance Data
The first phase of EventBreak dynamically analyzes an in-
teractive execution of the web application to record a history
of its events and their associated cost.



Definition 4 (Event-cost history)
An event-cost history h is a sequence of pairs (e0, c0), ..,
(ek, ck), where

• ei is an event;
• ci is the cost c(ei) of handling the event;
• e0 has been triggered in the initial state of the web appli-

cation; and
• ei+1 has been triggered in the state reached by ei.

To obtain an event-cost history, we load the initial page of
the application and trigger a sequence of events. To facilitate
this process in the absence of manually created tests, Event-
Break comes with a simple test generator that randomly
picks the next event to trigger from the set of all currently
enabled events. An event is enabled if the user can trigger it
in the current state of the application, and not enabled oth-
erwise. For example, a button that is hidden behind another
DOM element is not enabled. After loading the initial page,
the test generator repeatedly executes the following steps:

1. Query the browser for all currently enabled events.

2. Randomly pick an event from all enabled events. The test
generator randomly chooses among all enabled events
with a uniform distribution, with the exception of events
that go back to the URL of a previously seen referrer.
If any such “back to referrer” event is available, the test
generator chooses to go back to a referrer with a user-
defined probability β, and picks from all other events
with probability 1−β (we set β to 0.1). If the test genera-
tor decides to go back to a referrer, it picks from all refer-
rers seen in the history with a uniform distribution. The
rationale for this approach is that the number of refer-
rer URLs may grow in an unbounded way, for example,
because the application generates new URLs. Without a
fixed β, the probability to go back to a referrer would
become larger over time, while the probability to trigger
any other kind of event would decrease.

3. Execute and measure cost. The test generation executes
the event e, measures its cost c(e), and appends the pair
e, c(e) to the event-cost history.

As an alternative to randomly exploring the application,
EventBreak can incorporate manual testing by recording the
events triggered by a tester and their associated cost.

To measure the cost of events (Definition 2), EventBreak
instruments all JavaScript code of the application. The goal
of the instrumentation is to keep track of the number of
conditionals evaluated in reaction to an event. To this end,
EventBreak adds the following instrumentation:

• A global variable condCtr that counts the number of
evaluated conditionals.

• For each branching statement (if, while, do while, for,
for in), a statement condCtr++ at the beginning of each
branch.

Id Event Cost

1 E5 2
2 E6 14
3 E1 4
4 E2 3
5 E3 1
6 E4 8
7 E5 2
8 E6 18
9 E1 4

10 E2 3
11 E7 2
12 E5 2
13 E6 18
14 E1 4
15 E2 3
16 E3 1
17 E4 8
18 E5 2
19 E6 22

Potential slowdown pairs:

Pair Support Confidence

(E1, E6) 2 2/3=67%
(E2, E6) 2 2/3=67%
(E3, E6) 2 2/2=100%
(E4, E6) 2 2/2=100%
(E5, E6) 2 2/3=67%

Details on pair (E1, E6):

• Supporting evidence: Cost of E6 in-
creases twice when E1 occurs in be-
tween (Ids 2 and 8, Ids 13 and 19).

• Refuting evidence: Cost of E6 does
not increase even though E1 occurs
in between (Ids 8 and 13).

Figure 2. Example of event-cost history and inference of
potential slowdown pairs.

• For each function, a statement condCtr++ at the begin-
ning of the function. We increment the counter at each
function entry because we consider function dispatch as
a conditional, and to keep track of the cost of recursive
calls.

Example An execution of the example application in Fig-
ure 1a may give the history shown in the left part of Figure 2.
Each event has an associated cost. In practice, the cost values
are higher because many event handlers execute hundreds or
even thousands of conditionals. The following section de-
scribes how EventBreak uses these costs.

4.2 Inferring Potential Slowdown Pairs
Based on the event-cost history, EventBreak identifies po-
tential slowdown pairs by considering each pair of unique
events in the history as a candidate slowdown pair. For each
such candidate slowdown pair c, the approach gathers evi-
dence that supports the hypothesis that c is a slowdown pair
and evidence that refutes this hypothesis. Based on this evi-
dence, EventBreak computes a confidence score (intuitively,
how likely it is that c is a slowdown pair) and a support value
(intuitively, how many occurrences of the slowdown pair ex-
ist in the history) for each candidate slowdown pair.

Algorithm 1 details our approach to infer potential slow-
down pairs from a given history. The algorithm computes
the set E of unique events in the history, where uniqueness
refers to Definition 1. For example, if the history contains
two click events for a button with the same identifier while
being in the same application state, and if clicking the button
leads to the same state, then these two events are considered
two instances of the same event. The algorithm computes the



Algorithm 1 Infer potential slowdown pairs.
Input: Event-cost history h
Output: Set S of potential slowdown pairs

1: E ← unique events in h
// candidate slowdown pairs:

2: Scand ← {(ecause, eeffect) | ecause ∈ E , eeffect ∈ E}
3: Initialize AllEvidence to 0 for all s ∈ Scand
4: Initialize SuppEvidence to 0 for all s ∈ Scand
5: for all eeffect ∈ E do
6: if eeffect occurs at least suppmin +1 times in h then
7: c0 ← −1 // cost of most recent eeffect
8: Ebetween ← ∅
9: for all (e, c) in h do

10: if e = eeffect then
11: if c0 > −1 then // Second occurrence of eeffect
12: for all ecause ∈ E do
13: if c0 < c or ecause ∈ Ebetween then
14: Increment AllEvidence(ecause, eeffect)
15: if c0 < c and ecause ∈ Ebetween then
16: Increment SuppEvidence(ecause, eeffect)
17: c0 ← c
18: Ebetween ← ∅
19: else
20: Ebetween ← Ebetween ∪ {e}
21: S ← ∅
22: for all s ∈ Scand do
23: if AllEvidence(s) > 0 and SuppEvidence(s) >

suppmin and SuppEvidence(s)
AllEvidence(s) > confmin then

24: S ← S ∪ {s}

set C of candidate slowdown pairs as the set of all pairs of
events in E .

For the example execution in the left part of Figure 2, the
algorithm initially considers each pair built from {E1, .., E7}
as a candidate slowdown pair.

To validate or invalidate the hypothesis that a candidate
slowdown pair s = (ecause, eeffect) is a slowdown pair,
the algorithm searches for evidence that supports or refutes
this hypothesis. As evidence that supports the hypothesis, we
consider two occurrences of eeffect where the cost of the
first occurrence is smaller than the cost of the second occur-
rence, and where ecause occurs between the two occurrences
of eeffect. As evidence that refutes the hypothesis, we con-
sider two occurrences of eeffect where either the cost does
not increase, or where ecause does not occur between the
two occurrences of eeffect. The first case (the cost does not
increase) considers the situation where one event does not
influence the cost of another. The second case (ecause does
not occur between the occurrences of eeffect) considers the
situation where the cost of eeffect grows but not because of
ecause. The algorithm considers only the shortest possible
sequences with two occurrences of eeffect.

For the example in Figure 2, consider the candidate pair
(E1, E6). As evidence that supports the hypothesis that this
pair is a slowdown pair, the algorithm finds that the cost of
E6 increases twice whenE1 occurs in between. As evidence
that refutes the hypothesis, the algorithm finds that the cost
of E6 does not increase once even though E1 occurs in
between. The algorithm ignores, for example, the sequence
between Id 2 and Id 13 because it is not the shortest possible
sequence that contains two occurrences of E6.

To gather evidence about each candidate slowdown pair
s, the algorithm maintains two maps: AllEvidence maps
s to the total number of pieces of evidence related to s,
and SuppEvidence maps s to the number of pieces of
evidence that support the hypothesis that s is a slowdown
pair. Lines 3 and 4 initialize these maps to zero for all
candidate slowdown pairs. The algorithm iterates through all
events eeffect (line 5) and for each of them, iterates once
through the history (line 9). For efficiency, events that occur
so infrequently that their candidate slowdown pairs cannot
exceed a specified minimum support are ignored (line 6).
While iterating through the history, the algorithm maintains
the cost c0 of the current most recent occurrence of eeffect
and the set Ebetween of events that occur between the two
occurrences of eeffect. If the algorithm finds an occurrence
of eeffect that has been preceded by another occurrence
of eeffect, it updates the evidence maps AllEvidence and
SuppEvidence for all candidate pairs that involve eeffect
(lines 14 and 16).

Based on the evidence gathered for all candidate slow-
down pairs, the final part of the algorithm (lines 21 to 24)
computes the set S of potential slowdown pairs. For this
purpose, the algorithm checks for each candidate s whether
the supporting evidence reaches the minimum support and
whether the confidence SuppEvidence(s)

AllEvidence(s) reaches the mini-
mum confidence. All slowdown pairs that fulfill these re-
quirements are returned as potential slowdown pairs.

The time complexity of Algorithm 1 is O(|h| · e2),
where |h| is the number of event-cost pairs in the history h,
and where e is the number of unique events in h. Since
the number of unique events of an application is typically
bounded,3 the algorithm scales well to large initial execu-
tions.

For Figure 2, the algorithm finds five potential slowdown
pairs with confidence and support as shown in the table on
the upper right of the figure.

4.3 Targeted Exploration of Slowdown Pairs
The inferred potential slowdown pairs are likely to exist
based on the information available in the event-cost history.
The following presents a targeted test generation approach to
confirm whether a potential slowdown pair (ecause, eeffect)
can indeed increase the cost of handling eeffect. The basic

3 The number of unique events depends on how to represent the state of the
application, which we discuss in Section 7.



idea is to analyze the slowdown pair by trying to trigger a
sequence of events eeffect, .., ecause, .., eeffect, .., ecause,
.., eeffect etc., and to check whether the cost c(eeffect)
increases. A major challenge in realizing this idea is that
triggering an event requires the application to be in a state
where the event is available.

4.3.1 Leveraging an Application Model
To allow the test generator to trigger a particular event e, it
may be necessary to trigger a sequence of other events that
brings the application into a state where e is available. To ef-
fectively find such a sequence of events, EventBreak lever-
ages a finite state model of the application. Such an appli-
cation model is a non-deterministic finite state machine that
has model states, which abstract the application states, and
transitions, which represent events. EventBreak abstracts the
web application’s state into a model state based on the doc-
ument title and URL of the current page (Section 3.1).

Manually specifying an application model for a complex
web application is a tedious task, and there is no explicit
model for most existing web applications. Instead of relying
on a manually created model, EventBreak obtains an approx-
imate application model by applying an algorithm for pas-
sive automata learning to the sequence of events in the event-
cost history. Inferring a model is not the contribution of this
paper and we use a state of the art approach for inferring a
finite state machine from a given sequence of events [21].

Our targeted test generation approach must address the
problem that the learning algorithm yields an application
model that approximates the application. The model is ap-
proximate in two ways. First, the model may accept se-
quences of events that are not possible in the application
because the learning algorithm heuristically merges model
states that may not correspond to equivalent application
states. That is, the model may partly overapproximate the
application’s behavior. Second, the model may not accept
sequences of events that are possible in the application be-
cause the history does not contain the particular sequence of
events. That is, the model may partly underapproximate the
application’s behavior.

Figure 3 shows the approximate application model that
the learning algorithm infers from the history in Figure 2.
The bold items represent states; arrows represent transi-
tions. The model overapproximates the application because
it specifies that triggering E4 (save the new menu item) in
the “New Item” state leads back to the “Admin” state. How-
ever, this is only true after E3 (give the new item a name)
has been triggered.

4.3.2 Systematic Exploration of Slowdown pairs
Based on an approximate application model, EventBreak
systematically explores each potential slowdown pair. Algo-
rithm 2 summarizes the test generation approach. The goal
of the algorithm is to validate or invalidate the hypothesis
that a potential slowdown pair is indeed a slowdown pair.

Algorithm 2 Targeted exploration of slowdown pairs.
Input: Approximate application model M , set S of poten-

tial slowdown pairs
Output: Map G from slowdown pairs to cost vectors

1: G← empty map
2: s← s0 of M // initial state of application model
3: for all (ecause, eeffect) ∈ S do
4: costs← empty list
5: success← true
6: while isWorth(costs) and |costs| < maxCosts

and success do
7: (success,M, s, c)← trigger(M, s, eeffect)
8: if success then
9: costs.append(c)

10: (success,M, s, c)← trigger(M, s, ecause)
11: if |costs| = maxCosts then
12: G← G ∪ {(ecause, eeffect) 7→ costs}

Algorithm 3 Function trigger, which tries to trigger a target
event, possibly by triggering other events beforehand.
Input: Approximate application model M , current state s,

target event etarget
Output: Success flag, updated model M , updated state s,

cost c
1: eventsLeft← maxEvents
2: while eventsLeft > 0 do
3: Eavail ← availableEvents()
4: seqs← shortSeqsToTarget(M, s, etarget, Eavail)
5: if |seqs| = 0 then
6: return (false,M, s,−1)
7: e← pickFromFirstEvents(seqs)
8: (sdest, c)← triggerInApp(e)
9: (M, s)← updateModelAndState(M, s, e, sdest)

10: if e = etarget and etarget.s′ = sdest then
11: return (true,M, s, c)
12: eventsLeft← eventsLeft− 1
13: return (false,M, s,−1)

The algorithm takes a model M and a set S of potential
slowdown pairs, and it returns a map G that assigns a list
of cost values of eeffect to each pair (ecause, eeffect) that is
found to be a slowdown pair. Since the pair is found to be a
slowdown pair, the cost values in the list are monotonically
increasing (Definition 3).

The algorithm iterates through all potential slowdown
pairs (line 3) and analyzes each of them. To analyze a partic-
ular slowdown pair (ecause, eeffect), the algorithm tries to
alternately trigger the two events and all events that may be
necessary to enable triggering these two events. While do-
ing so, the test generator builds a list costs of cost values for
executing eeffect (line 9). The exploration of a slowdown



pair continues until one of the following conditions holds
(line 6):

• The costs of the slowdown pair are not strictly monoton-
ically increasing, that is, the targeted exploration reveals
that the potential slowdown pair is not a slowdown pair.
The helper function isWorth checks this condition. Al-
ternative implementations of isWorth are possible, for
example, to check the overall trend of eeffect’s cost in-
stead of requiring a strictly monotonic increase.

• The length of costs has reached a user-specified length
maxCosts. That is, the test generation has alternately
triggered the two events of the slowdown pairmaxCosts
times and the cost of eeffect has increased each time.
In this case, the test generator confirms that the pair is
indeed a slowdown pair.

• The test generator is unable to alternately trigger the
two events of the slowdown pair, which is indicated by
success becoming false. For example, this situation
may happen when the test generator cannot find a se-
quence of events that ends in the desired event. In this
case, the test generator cannot confirm that the pair is a
slowdown pair.

For our running example, the algorithm considers all po-
tential slowdown pairs in Figure 2 and quickly discards most
of them. For example, the pair (E5, E6) is discarded be-
cause triggering E5 and E6 alternately does not increase
the cost of E6. The algorithm confirms the pair (E4, E6)
as a slowdown pair because repeatedly triggering E4 indeed
increases the cost of executing E6.

4.3.3 Triggering a Target Event
When the test generator tries to trigger a particular event (ei-
ther ecause or eeffect), we call this event the target event.
To trigger a particular target event, the test generator calls
trigger, which is summarized in Algorithm 3. The algo-
rithm takes the application modelM , the current state s, and
a target event etarget, and tries to trigger events that eventu-
ally allow for triggering the target event. The basic idea is to
execute the following steps:

1. Search the application model for short sequences seqs of
events from the current state to a state where the target
event is available (line 4).

2. From all events that appear at the beginning of a sequence
in seqs, randomly pick an event e (line 7). According to
the model, triggering e brings the application closer to a
state where etarget is available.

3. Trigger e in the application (line 8), which yields the des-
tination state sdest and the cost c(e). The algorithm up-
dates the application model and the current state (line 9).

4. If the triggered event e is the target event etarget, return
the updated application model and state, along with the
cost c of the target event (line 11). Otherwise, continue

Admin Menu Items New Item
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(E2)

click
(E5)
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click (E4), back to referer (E7)

insert text (E3)
click (E4)

Figure 3. Approximate application model for the applica-
tion in Figure 1a.

these steps until we reach etarget or until the algorithm
has triggered maxEvents events. In the latter case, the
algorithm returns false to indicate that it cannot trigger
etarget.

Function shortSeqsToTarget queries the model to ob-
tain a set of sequences from the current state to a state starget
where the target event is available. The function performs
a breadth-first search starting at the current state and re-
turns all shortest sequences that lead to starget. In addition
to all shortest sequences, the algorithm returns some longer
sequences by probabilistically continuing the breadth-first
search beyond a shortest sequence. Whenever the breadth-
first search could follow another event that extends the cur-
rent sequence beyond the length of the shortest sequence, it
does so with a specified probability γ (we set γ to 0.33). This
approach includes some sequences that are longer than the
shortest sequence and probabilistically terminates the search
eventually. The rationale for considering not only the short-
est sequences is to find a sequence even if the model is im-
precise (Section 4.3.4).

After triggering an event e in the application, Algorithm 3
calls updateModelAndState. This function updates the
current state to the destination state of e. Furthermore, the
function updates the model M to reflect what triggering e
has revealed about the application. If the destination state
of e matches the destination state predicted by the model,
than the model remains unchanged. If, however, the model
predicts an incorrect destination state for e, then the ap-
proach updates the model by rerunning the model learning
algorithm on the current history, which ends with event e.

Example Consider the history in Figure 2 and the potential
slowdown pair (E4, E6). To explore this pair, Algorithm 2
tries to trigger E6, E4, E6, etc. Suppose, the algorithm has
successfully triggered E6 and the application is again at the
“Admin” state. Now, Algorithm 2 invokes Algorithm 3 to
trigger event E4 and possibly other events that may be nec-
essary to reach E4. Algorithm 3 uses the model in Figure 3
to perform the following iterations of its main loop:

1. From its current state s, “Admin”, the algorithm finds
two short sequences leading to E4: E1 − E2 − E4 and
E1−E2−E3−E4. It picksE1 as the next event (line 7),
which leads to state “Menu Items”.



2. At state “Menu Items”, the algorithm again finds two
short sequences leading to E4: E2−E4 and E2−E3−
E4. It picks E2 as the next event, which leads to state
“New Item”.

3. At state “New Item”, the algorithm again finds two se-
quences E4 and E3 − E4, that is, the algorithm must
decide between E3 and E4. Suppose the algorithm picks
E4. After triggering this event, the application remains
at state “New Item”, which does not match the current
model. Therefore, the algorithm re-learns the model,
which adds the transition printed in gray to Figure 3.

4. Still at state “New Item”, the algorithm now finds three
short sequences that lead to E4: E4, E3−E4, and E4−
E4. That is, the algorithm randomly decides between E4
and E3. Suppose, it picks E3, which fills in a name
for the new menu item. After triggering this event, the
application remains at state “New Item”, which matches
the current model.

5. Still at state “New Item”, the algorithm again considers
three sequences: E4, E3− E4, and E4− E4. Suppose,
it now picks event E4, which leads to state “Admin”.
The triggered event matches the target event and the
actual destination state of the application matches the
destination state of the target event. That is, the algorithm
has reached its goal and returns (line 11).

4.3.4 Dealing with Imprecise Models
The above example illustrates how Algorithm 3 gets closer
to the target event even though the model is imprecise. Due
to overapproximation, the shortest event sequence to the tar-
get event in the model may not be feasible in the application.
For example, the shortest sequence from S1 that ends with
E4 does not include E3. However, the application forces
users to enter a name for a menu item (E3) before saving
the menu item (E4). To allow the algorithm to find a feasi-
ble event sequence, which may or may not be the shortest
according to the model, it gathers all short event sequences
to the target and randomly picks a first event from these
sequences. Another problem related to imprecise models is
that, due to underapproximation, the model may not contain
any sequence that leads from the current state to the target
event. To avoid getting stuck, the algorithm stops searching
for the target event after a specified number maxEvents of
events and returns with the success flag set to false (line 6).

4.4 Summary of Responsiveness Problems
After systematically exploring each potential slowdown pair,
the final step of EventBreak is to summarize the information
about slowdown pairs and to present it to the user. Algo-
rithm 2 returns a map G from slowdown pairs to cost vec-
tors. The final step of EventBreak creates a report for each
slowdown pair that contains the following information:

• The two events ecause and eeffect of the slowdown pair.

• A cost plot that shows the cost of eeffect as a function
of the number of times that ecause and eeffect have been
alternated.

The plot allows developers to quickly assess the importance
of a slowdown pair based on the absolute cost values and
based on the trend of these values. EventBreak can be com-
bined with existing work on measuring empirical complexity
that fits the observed cost values to a model that predicts its
further development [12].

For our running example, EventBreak creates a plot that
shows that the cost of executing event E6 linearly increased
with the number of executions of event E4.

5. Implementation
The test generator is implemented as a Firefox add-on. The
add-on obtains the list of all currently enabled JavaScript
events through the browser’s event listener service. To han-
dle non-JavaScript events, such as scrolling, filling out
forms, and clicking on links, the add-on adds dummy han-
dlers to the web page before querying the event listener
service, essentially turning a non-JavaScript event into a
JavaScript event. For example, the add-on attaches to each
form field a dummy handler that modifies the form field
when being triggered. For events that require input data from
the user, such as as filling text fields of a form, we use ran-
dom input data.

To instrument JavaScript code (Section 4.1), we parse it
with Esprima4, modify the resulting AST, and generate in-
strumented code with Escodegen.5 We modify Spidermon-
key (snapshot 151486), the JavaScript engine of Firefox, to
intercept JavaScript code before it is executed. The modified
browser intercepts all JavaScript code of web pages, instru-
ments it, and executes only instrumented code. By imple-
menting the instrumentation in the browser, we ensure to in-
strument all code, including code that is dynamically gener-
ated and loaded via eval(). In total, modifying Spidermon-
key requires to change 261 lines of C++ code.

For inferring potential slowdown candidates (Algorithm 1),
we use confmin = 0.8 and suppmin = 3. For targeted ex-
ploration (Algorithms 2 and 3), we use maxEvents = 200
and maxCosts = 20.

6. Evaluation
The evaluation is driven by the following questions:

• Does EventBreak detect slowdown pairs in complex web
applications? In total, the approach detects and confirms
six unique slowdown pairs in three programs. Two pairs
correspond to known bugs and the other four pairs are
previously unknown responsiveness problems.

4 http://esprima.org/
5 https://github.com/Constellation/escodegen



• Does searching slowdown pairs provide insights about
the responsiveness of an application? The detected slow-
down pairs include a confirmed bug that makes the ap-
plication unresponsive, and a scalability problem that
crashes the application and makes it unusable. The cost
plots produced by EventBreak help understand the per-
formance of the analyzed event handlers.

• How effective is the targeted exploration in alternately
triggering the two events of a potential slowdown pair?
EventBreak successfully triggers 3,166 out of 3,563 tar-
get events that it tries to trigger (89%). On average, it
takes 33 other events to reach a state where the target
event can be triggered.

• How much does the initial execution (first phase) influ-
ence the ability to detect slowdown pairs? The overall ef-
fectiveness of EventBreak depends on the potential slow-
down pairs that are exposed in the initial execution.

6.1 Experimental Setup
We use three real-world web applications for our experi-
ments: (i) Joomla 3.2.1.0, which loads up to 1,678 JavaScript
files/scripts comprising 9,364kB; (ii) Drupal 8.0.alpha7-0,
which loads up to 296 JavaScript files/scripts comprising
3,104kB; and (iii) Tizen Todo List, which loads up to 21
JavaScript files/scripts comprising 672kB. Joomla and Dru-
pal are popular content management systems that are rep-
resentative of large web applications with a complex client-
side component. Tizen Todo List is a task management ap-
plication developed by others as an example of building ap-
plications for the Tizen platform. It is representative for mid-
size, JavaScript-focused web applications.

We apply EventBreak to each application in the two usage
scenarios described in Section 1. These scenarios differ in
how to obtain the event-cost history during the first phase of
EventBreak. On the one hand, we use random test generation
to explore applications in a fully automatic way. On the other
hand, we manually exercise each application by triggering
events that might have interesting performance properties.
For example, we trigger events that accumulate data and
events that are likely to process these data. Each manual
testing scenario takes less than five minutes of manual effort.
We manually tested the applications without knowing their
implementations. Table 1 lists the usage scenarios of the
evaluation, along with the number of events they include:

• Scenario 1: We manually test Joomla to reproduce the
bug described in Section 2. Therefore, we create several
menu items and save the menu several times.

• Scenario 2: We manually test Joomla by adding cate-
gories (to be used for grouping articles), by listing all
categories, and by sorting the categories according to dif-
ferent criteria, such as their title and their ID.

• Scenario 3: We manually test Drupal by creating several
articles and by listing all articles.

• Scenario 4: We manually test Todo List by adding several
tasks to the todo list of the current day.

• Scenarios 5 to 8: EventBreak automatically explores dif-
ferent components of Joomla, Drupal, and Todo List. For
Joomla and Drupal, we limit the search space to subsets
of the entire application.

6.2 First Phase
The right-most of the columns for the first phase in Table 1
shows how many potential slowdown pairs the approach
infers. EventBreak explores all these pairs in the second
phase of the approach.

6.3 Confirmed Slowdown Pairs
In total, the second phase of EventBreak detects and con-
firms six unique slowdown pairs, some of which are detected
by more than one usage scenario (last column of Table 1). In
the following, we describe several slowdown pairs and what
they reveal about the responsiveness of the analyzed web ap-
plication.

6.3.1 Database Connection Error in Drupal
From usage scenario 3, EventBreak infers the following
potential slowdown pair:

• ecause is to click the “Save and publish” button that
finalizes the process of adding a new article.

• eeffect is to click the “Content” link in the menu of the
application, which leads to a page that lists all articles.

During the targeted exploration phase, EventBreak re-
peatedly triggers these two events because the cost of eeffect
is gradually increasing. After about 20 articles have been
added, the application crashes and shows an error message
in the browser. The reason is that a query to the MySQL
database results in a reply that exceeds the maximum packet
size of the database. We use both Drupal and MySQL in
the default configuration shipped as part of the popular Bit-
nami LAMP stack. Unfortunately, this default configuration
makes large parts of Drupal unusable because it crashes
whenever the user tries to list all articles. The problem was
reported by others and has been recognized by the develop-
ers.6

Figure 4 shows the cost plot produced by EventBreak.
The cost of handling eeffect, which loads the “Content”
page, increases gradually and suddenly drops when Drupal
crashes.

6.3.2 Bounded Cost in Drupal
We fix the problem described in Section 6.3.1 by increas-
ing the maximum packet size of the MySQL database, and
we re-run the targeted exploration phase of EventBreak. The
approach again explores the potential slowdown pair from
Section 6.3.1 and adds more and more articles because the
6 Drupal Issue 121390



ID Program First phase Second phase

Driver Events Model Potential Events Target events Confirmed

(unique) States Trans. slowd. pairs All Reached slowd. pairs

1 Joomla (menus, modules) Manual 69 (21) 9 21 24 7,710 245 96% 2
2 Joomla (categories) Manual 19 (8) 3 8 3 174 15 100% 1
3 Drupal (articles) Manual 26 (7) 5 7 4 925 82 96% 1
4 Todo List Manual 30 (5) 2 6 4 1,251 318 100% 2
5 Joomla (menus, modules) Random 5,000 (2,350) 141 2,350 358 44,120 1,169 88% 1
6 Joomla (categories) Random 5,000 (822) 20 823 405 44,181 1,099 86% 0
7 Drupal (articles) Random 5,000 (511) 20 511 141 16,715 364 78% 0
8 Todo List Random 1,000 (69) 6 69 56 5,010 271 99% 1

Total 120,086 3,563 89%

Table 1. Usage scenarios for the evaluation. For the first phase, we give the number of (unique) events triggered, the size of
the approximate model in terms of states and transitions, and the number of inferred potential slowdown pairs. For the second
phase, we give the number of events triggered, how many target events EventBreak tries to reach, how many of them (%) it
reaches, and the number of confirmed slowdown pairs.
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Figure 4. Cost plot for Drupal, which drops when Dru-
pal crashes because it exceeds the maximum packet size of
MySQL.

cost of listing all articles increases gradually: Each new ar-
ticle leads to the evaluation of 3,533 additional conditionals
when listing all articles. After 50 articles have been added,
the cost of listing all articles remains constant despite adding
more articles. The cost plot in Figure 5 illustrates this be-
havior. The reason why the cost stabilizes is that the Drupal
developers effectively bound the maximum cost of eeffect:
Drupal list at most 50 articles per page and the user must
visit another page to see more articles. The example shows
that EventBreak is useful for confirming that upper bounds
for the cost of event handlers work as expected. For example,
this may be useful if a developer has fixed a responsiveness
bug and wants to validate that the fix works.

6.3.3 Responsiveness Bug in Joomla (Issue 30274)
For both usage scenarios 1 and 5, EventBreak infers the
following potential slowdown pair, which corresponds to the
bug of the motivating example (Section 2):
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Figure 5. Cost plot for Drupal. The cost stabilizes when the
total number of articles reaches 50 because the developers
successfully bound the maximum cost of the event handler.
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• ecause is to click the “Save & Close” button that finalizes
the process of adding a new menu item.

• eeffect is to click the “Save & Close” button that stores
the properties of the menu.
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Figure 7. Cost plot for Todo List. It reveals that the cost of
saving a new task grows in an unbounded way.

EventBreak can reproduce this known bug both based on
manual testing and in a fully automatic manner. Figure 6
shows the cost plot, which illustrates that the cost of eeffect
grows linearly with respect to the number of repetitions of
ecause.

6.3.4 Unbounded Cost of Sorting Categories in Joomla
For scenario 2, EventBreak infers the following potential
slowdown pair:

• ecause is to click the “Save as Copy” button that dupli-
cates an existing category.

• eeffect is to click the column head “Title” of the table
that lists all categories. This event causes Joomla to sort
all categories by their title.

When exploring this potential slowdown pair, EventBreak
finds that the cost of eeffect increases as a result of trigger-
ing ecause. The reason is that Joomla implements the sorting
of categories in a single event handler that, independently of
the number of categories, sorts all existing categories. As a
result, sorting categories may lead to a responsiveness prob-
lem for users that have many categories. This problem has
been previously unknown.

6.3.5 Unbounded Growth in Todo List
From scenarios 4 and 8, EventBreak infers the following
potential slowdown pair:

• ecause is to click the “Add task” button, which adds a new
task to a todo list.

• eeffect is to click the “Save task” button, which stores a
new task to local storage.

When exploring this pair, EventBreak confirms that it is in-
deed a slowdown pair and produces the cost plot in Figure 7.

The slowdown pair reveals several previously unknown
responsiveness problems in the design of Todo List, which
affect the handler executed when adding a new task. First,
the handler iterates through all tasks for the same day to
group tasks by when they are due. Second, the handler cre-
ates DOM elements for each task of the currently displayed

day whenever a new task has been added, including for tasks
that become visible only when scrolling. Third, the handler
iterates through all tasks in the entire database of tasks to
check if the new task has been moved from another day.
When adding a new task, this check is not only unneces-
sarily executed, but it couples the cost of adding a new task
to the total number of stored tasks.

All three issues cause the cost of saving a new task to be
unbounded because the cost grows whenever a new task is
added for the currently displayed day. For users of Todo List
who have only a small number of tasks per day, the first two
issues may not be relevant in practice. However, the third
issue severely limits the application’s scalability to a large
number of tasks because it causes the cost of saving a task
to grow depending on the total number of stored tasks. To
fix the problem, the code should avoid comparing a newly
added task to all existing tasks.

6.3.6 Other Confirmed Slowdown Pairs
In addition to the slowdown pairs described above, Event-
Break finds two more pairs that lead to an unbounded, lin-
early increasing execution time of event handlers. First, the
approach finds another slowdown pair in Joomla: Adding a
menu items increases the cost of loading a page that lists all
menu items. Second, the approach finds another slowdown
pair in Todo List: Saving a new task increases the cost of
starting to add a new task. The second pair is the inverse
of the pair in Section 6.3.5. The problem is that Todo List
queries the current DOM via JQuery when constructing the
UI for editing a new task. Since the DOM size depends on
the number of existing tasks, this query gradually becomes
more expensive when adding new tasks. Both problems may
make the respective application unresponsive and have not
been previously reported.

6.4 Unconfirmed Slowdown Pairs
EventBreak rejects most potential slowdown pairs because
they are not confirmed by the targeted exploration. We in-
spect a sample of such unconfirmed slowdown pairs and find
two main reasons why pairs are not confirmed as slowdown
pairs. First, an event e1 may coincidentally occur between
two occurrences of another event e2, which has an increasing
cost. For example, when exploring the potential slowdown
pairs inferred from scenarios 1 and 5, EventBreak considers
several pairs similar to the pair in Section 6.3.3. Saving a
new menu item requires several other events to happen be-
fore, such as setting a name for the menu item. Because these
other events always occur before saving the menu item, Al-
gorithm 1 finds them as potential cause for the increased cost
of saving the menu. However, Algorithm 2 rejects these po-
tential slowdown pairs because they are not the root cause of
the problem. Second, some events have a varying execution
time, for example, depending on the input written into a text
field of a form. Since the root cause for these variations is



not another event, the targeted exploration rejects any pairs
related to such events.

The inspection of unconfirmed slowdown pairs shows
that the targeted exploration phase of EventBreak is a vital
part of the approach. It effectively focuses the user’s atten-
tion on events that indeed have a gradually increasing cost
and finds the event that causes this increase.

6.5 Effectiveness of Targeted Exploration
To assess the effectiveness of Algorithms 2 and 3 in ex-
ploring potential slowdown pairs, we measure how many
events EventBreak triggers during the second phase of the
approach, how many target events it succeeds to trigger, and
for how many target events it gives up because Algorithm 3
exceeds the maximum number of triggered events. Table 1
shows the results for each usage scenario. In total, Event-
Break triggers 120,086 events and thereby reaches 3,166 tar-
get events. On average, the approach requires 33 events to
reach a state at which it can trigger the target event. Out of
3,563 target events that EventBreak tries to trigger, it fails
to reach 397 (11%). For example, this may happen because
reaching the target event requires that a particular sequence
of events happens beforehand, which Algorithm 3 fails to
find within the given maximum number of triggered events.
We conclude that EventBreak is effective in triggering par-
ticular target events.

6.6 Influence of Usage Scenarios for Initial Execution
EventBreak amplifies problems exposed by an initial execu-
tion and therefore can detect responsiveness problems only
if the involved events occur multiple times in the initial ex-
ecution. The results from different usage scenarios (Table 1)
illustrate the influence of the initial execution. Four of the six
detected problems are detected based on an initial manual
execution (scenarios 1 to 4) but not based on an initial ran-
dom exploration (scenarios 4 to 8). By inspecting the event-
cost histories of different scenarios, we find two reasons. For
three of the four problems missed with initial random explo-
ration, the event-cost history exposes the slowdown pair but
does not expose it clearly enough for Algorithm 1 to infer
the problematic pair. For example, the slowdown pair that
exposes the bug in Drupal (Section 6.3.1) is inferred but dis-
carded because the confidence of 0.67 is below our threshold
of confmin = 0.8 and because the support of 2 is below our
threshold of suppmin = 3. For one of the four problems
missed with initial random exploration (Section 6.3.4), the
event-cost history contains one of the involved events ex-
actly once, which is not enough to identify a potential slow-
down pair.

7. Discussion and Future Work
Driver for First Phase Our approach is orthogonal to the
usage scenario that drives the first phase of the approach. The
two scenarios used in our evaluation, short manual tests done

without knowing the applications’ implementations and a
simple form of random testing, provide a lower bound for
EventBreak’s effectiveness. As an alternative to the scena-
rios we evaluate here, EventBreak can build on other drivers
for the first phase. First, EventBreak can build upon more
sophisticated automated test generation approaches [6, 34],
which will explore an application more effectively than our
random exploration. Second, EventBreak can leverage an
existing suite of correctness tests and turn them into re-
sponsiveness tests by amplifying the initial execution. Third,
EventBreak can be combined with a mechanism to record
execution traces from real users. In this scenario, the ap-
proach can reveal responsiveness problems that may not yet
have become apparent because the users did not repeat the
involved events often enough, and help avoiding them in the
future. Based on our initial experience with EventBreak, we
expect that its overall effectiveness will improve when using
more sophisticated drivers for the first phase.

State Abstraction Our definition of events (Section 3.1)
and the inferred application model (Section 4.3.1) rely on
a state abstraction function that transforms a concrete appli-
cation state into a more abstract representation. The effec-
tiveness of EventBreak depends on the fact that an event that
takes longer when being repeatedly triggered is represented
as the same abstract event each time it is triggered. If, in-
stead, the state abstraction function created a new state each
time the event is triggered, then our approach could not find
the responsiveness problem because there would not be an
event with increasing execution time. Currently, EventBreak
uses a simple state abstraction function that represents the
web application’s state based on the document title and the
URL of the current page. This abstraction is sufficient for
the applications used in the evaluation but may be insuffi-
cient for other applications. Future work will explore tech-
niques to automatically identify a state abstraction function
for a particular application, so that abstract states are precise
enough to allow for navigating the application, yet generic
enough to yield a bounded number of states.

8. Related Work
Various testing techniques infer a model of a user interface
application to create tests that increase coverage [6, 9, 24–
27, 34]. Our work is orthogonal to existing model learning
techniques and contributes by leveraging a model to guide
testing efforts towards potential responsiveness problems.
The problems found by EventBreak are likely to be missed
by approaches focused on coverage because triggering these
problems requires the repeated execution of particular event
sequences. Brooks and Memon use a finite-state model to
generate tests that represent realistic usage scenarios [4].
Jensen et al. [16] leverage a model, along with symbolic
summaries of event handlers, to create event sequences that
reach a particular target statement. Our work differs by con-
sidering another kind of target (handlers that are likely to be



part of a responsiveness problem) and by using an inferred
and therefore approximate model. Other approaches to test
user interface applications focus on infrequently selected
widgets [23], or perform concolic execution, where input
data of events are handled as symbolic variables [2, 10, 33]
Azim and Neamtiu leverage a static taint-style analysis to
generate tests for event-based applications [3]. All these ap-
proaches do not focus on performance problems.

Static [14] and dynamic [12, 42] analyses for finding
the computational complexity of a function is related to
the cost plots produced by EventBreak. These approaches
analyze the computational complexity of individual func-
tions, whereas we consider event sequences. Xiao et al. [36]
propose a multi-execution profiling approach to identify
workload-dependent performance bottlenecks, for example,
in methods that block the UI thread. In contrast to Event-
Break, their approach requires users to provide workloads,
and it focuses on problems caused by passing large amounts
of input data to an application. Wise [5] uses symbolic test
generation to find inputs that trigger the worst-case com-
plexity of a program. Algorithmic denial of service [7] is a
class of attacks that attempts to reduce the performance of
a server by repeatedly sending data that exposes bad perfor-
mance. SpeedGun [31] is a technique for automated perfor-
mance regression testing of thread-safe classes. Our work
shares the idea of generating input to trigger performance
problems. EventBreak differs from [5], [7], and [31] by gen-
erating sequences of events instead of input data. Grechanik
et al. [13] describe a strategy for selecting test cases that may
expose performance problems, assuming to have a large set
of existing test inputs.

Jin et al. [17] and Liu et al. [22] describe static code
checkers that search for occurrences of common performance-
related antipatterns. Several profiling approaches find exces-
sive memory usage and unnecessary computation, for exam-
ple, repeated executions of similar behavior in loops [30],
underutilized or overutilized containers [37], unnecessarily
copied data [38], and objects where the cost to create them
exceeds the benefit from using them [39]. Yan et al. use ref-
erence propagation profiling to detect common patterns of
excessive memory usage [40]. These analyses focus on par-
ticular root causes of suboptimal performance. Instead, our
approach analyzes event handlers as a black box and finds
handlers with noteworthy responsiveness properties inde-
pendent of a specific root cause.

StackMine [15] mines a stream of stack trace snapshots
of a multi-threaded application to detect performance prob-
lems. Wert et al. [35] propose a framework to systemati-
cally search for occurrences of performance antipatterns in
distributed systems. One of their strategies, called “Direct
Growth”, identifies growing response times over the mea-
surement time of a system under test. In contrast to both [35]
and [15], our approach systematically generates input to as-
sess whether a potential performance problem exists. Fur-

thermore, our approach identifies the event that causes the
execution time of another event to increase.

Adamoli et al. [1] evaluate approaches for automating
performance tests of GUI applications by capturing and re-
playing interactive executions. Our approach is complemen-
tary to capture and replay tools because it creates input se-
quences. Khoo et al. propose a programming model to ease
the task of writing responsive event-driven applications by
splitting long-running computations into asynchronous call-
backs [19].

Killian et al. [20] propose to find performance problems
in event-driven, distributed systems by searching anoma-
lies in how long an event takes to be processed. Our work
also searches for abnormal performance characteristics but
focuses on events that have a gradually increasing, poten-
tially unbounded execution time. AppInsight [32] instru-
ments mobile application binaries to identify performance-
critical paths after deploying the application. In contrast,
EventBreak can analyze applications before deploying them
to users. Jovic et al. [18] propose a profiler that identifies per-
ceptible performance problems in GUI applications. Their
approach reports a sorted list of methods that may cause la-
tency, whereas our approach confirms each potential prob-
lem through systematic event generation. Mi et al. [28] pro-
pose a runtime analysis for distributed systems that explains
why two similar executions expose different performance
characteristics. EventBreak differs from [28] by systemat-
ically creating tests for this purpose instead of relying on
existing executions.

A recent study [22] shows that event-driven applications
often suffer from performance bugs. It reports that many
real-world bugs manifest only when particular user inter-
actions occur and that many bugs cause the application to
become unresponsive. Our work addresses these problems.
Other studies confirm that performance bugs are a common
problem [17] and that developers face problems in reproduc-
ing performance problems reported by users [41].

9. Conclusions
Developers of event-driven program currently rely on man-
ual testing and profiling to find performance and scalability
problems. This paper presents EventBreak, an approach for
analyzing the responsiveness of web applications through
performance-guided test generation. The approach identifies
and explores pairs of input events that, if triggered alter-
nately, take longer and longer to process. Since processing
an event blocks the single thread that executes JavaScript
code in the browser, events should always terminate quickly
to avoid making the application unresponsive. EventBreak
allows developers to find events that have a potentially un-
bounded increase of their execution time or to verify that
the execution time of an event is bounded. We apply the ap-
proach to complex web applications and show that it finds



previously known and previously unknown bugs, and that it
provides insights about the performance of particular events.

Our implementation and all data required to reproduce our
results are available at:
https://github.com/michaelpradel/WebAppWalker
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