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ABSTRACT

To avoid receiving incorrect arguments, a method specifies
the expected type of each formal parameter. However, some
parameter types are too general and have subtypes that the
method does not expect as actual argument types. For ex-
ample, this may happen if there is no common supertype
that precisely describes all expected types. As a result of
such brittle parameter typing, a caller may accidentally pass
arguments unexpected by the callee without any warnings
from the type system. This paper presents a fully auto-
matic, static analysis to find brittle parameter typing and
unexpected arguments given to brittle parameters. First,
the analysis infers from callers of a method the types that
arguments commonly have. Then, the analysis reports po-
tentially unexpected arguments that stand out by having an
unusual type. We apply the approach to 21 real-world Java
programs that use the Swing API, an API providing various
methods with brittle parameters. The analysis reveals 15
previously unknown bugs and code smells where program-
mers pass arguments that are compatible with the declared
parameter type but nevertheless unexpected by the callee.
The warnings reported by the analysis have 47% precision
and 83% recall.

Categories and Subject Descriptors
D.2.5 [Software Engineering]: Testing and debugging

General Terms

Experimentation, Languages, Reliability
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1. INTRODUCTION

In statically-typed programming languages, the type sys-
tem ensures that method arguments have a type expected
by the callee. This check is done under the assumption that
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Figure 1: Excerpt of Swing’s type hierarchy show-
ing that JMenu.add(Component) has a brittle parameter.
The declared parameter type has a gray background.
Only the bold types should be passed as arguments.
Dotted types are compatible but lead to incorrect
behavior. Arguments of the remaining types may
be correct or incorrect.

all subtypes of the declared parameter type are legal argu-
ment types [11].1 Unfortunately, method parameters may
have subtypes that are not expected by the callee. We call
this situation brittle parameter typing (or simply a brittle
parameter), because the safety guaranteed by the type sys-
tem is easily breakable. A type system may find arguments
given to brittle parameters to be legal, but in fact they are
incorrect because the callee does not expect them.

1.1 Example

For example, consider the method JMenu.add(Component)
from the Java Swing API (Figure 1). The declared param-
eter type Component has various subtypes, all of which are
valid argument types according to the method declaration
of add(). However, the API documentation states that a
menu can only contain JMenuItems and JSeparators, that is,
a subset of all compatible argument types. If a program-
mer adds a Component with another compatible type, such as
CheckBox, the call is incorrect because its behavior is unde-
fined.

Figure 2 illustrates a bug caused by passing an unexpected
argument to the brittle parameter of JMenu.add(Component).
We found this problem in a real-world program (nTorrent,
a graphical user interface for a BitTorrent client?) and the

"We refer to formal parameters in a method declaration as
parameters and to objects passed to methods at a call site
as arguments.

2http://code.google.com/p/ntorrent/
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Figure 2: Demonstration of a real-world bug result-
ing from passing an unexpected argument to a brit-
tle parameter.

developers confirmed it as a bug after receiving our report.
The correct menu entry is of type JCheckBoxMenultem. An
item of this type is highlighted when hovering over it, and
clicking it will close the menu. However, the programmer
accidentally passes a JCheckBox to JMenu.add(Component). In
contrast to the correct menu item, the wrong item does not
react on hovering, and clicking it does not give the expected
behavior.

How can developers find errors caused by compatible but
unexpected argument types? Finding errors related to brit-
tle parameters is hard. First of all, traditional compilers
and type systems are oblivious to the problem, because the
argument type will type check given the declared parameter
type. Furthermore, unexpected arguments may slip through
traditional testing if they do not manifest through an excep-
tion. For example, the bug in Figure 2 does not raise an ex-
ception or any other obvious error. Instead, it leads to non-
functional GUI elements as illustrated in Figure 2. Finally,
programmers with little experience in programming against
a particular API are prone to pass unexpected arguments,
because the knowledge about expected argument types is
often scarcely or not at all documented. For the above ex-
ample, the expected types are listed in JMenu’s class docu-
mentation but not in the method documentation of add().

1.2 Why Brittle Parameter Typing Exists

There are several reasons for brittle parameter typing in
API methods. One reason is that the API designers had
more functionality in mind when publishing the API and
wanted to leave an easy way to later add this functionality
without changing the method signature. Changing a param-
eter type to a more specific type after releasing an API is
difficult, as it may break existing client code.

Brittle parameter typing also occurs when it is impossi-
ble to create a common supertype that precisely describes
all expected types. If no such supertype exists, it may be
possible to let all expected types implement a marker inter-
face [1] and to use this interface as the parameter type. Un-
fortunately, this approach is infeasible if one or more of the
expected types are declared outside of the API and there-
fore cannot be changed, for example, if String is among the
expected argument types.

1.3 Our Approach

This paper presents a fully automatic, static analysis to
(i) find brittle parameters and (ii) reveal unexpected argu-
ments passed to methods with such parameters. The key
idea is a simple one: We leverage existing API clients to
infer the argument types that an API method expects and
warn developers about apparently unexpected arguments.
The analysis has two main steps. At first, it statically ex-
tracts argument types from call sites of APT methods. Then,
it searches for argument types that are unusual with respect

the other arguments passed to the parameter. The second
step assumes the analyzed client programs to be mostly cor-
rect, an assumption shared with other anomaly detection
techniques [8, 3, 15, 23, 16].

Despite being simple, the approach is easy to apply and
effective in practice. It is easy to apply, because it does not
require any formal specification of expected argument types.
Instead, all required information is automatically extracted
from existing client code. As the analysis is independent of
the API implementation, it is applicable to arbitrary third-
party APIs. The approach is effective, because it reveals real
programming errors. The price for being simple and effec-
tive is that the analysis is neither sound nor complete, that
is, it might report spurious warnings and miss real errors.
However, our results show both problems to be manageable
in practice.

We evaluate the approach with 21 Java programs that use
the Swing API. Swing has been developed on top of an ex-
isting API (AWT) and has a complex type hierarchy. As a
result, Swing has various methods with brittle parameters,
making it a good candidate for our evaluation. In total, the
analysis reveals 15 previously unknown bugs and code smells
in the analyzed programs, some of which have already been
fixed in response to our bug reports. In its default configu-
ration, the analysis has 47% true positives. The sensitivity
of the analysis to unusual argument types can be tuned with
threshold parameters, allowing developers to find an accept-
able trade-off between precise warnings (few false positives)
and finding many bugs. In addition to evaluating the ap-
proach with real bugs, we automatically seed bugs into ex-
isting programs. With its default parameters, the analysis
finds 83% of these bugs.

1.4 Contributions

In summary, this paper contributes the following:

e We identify the problem of brittle parameter typing as
a source of programming errors.

e We present a static analysis to detect unexpected argu-
ments given to methods with brittle parameters. The
analysis is fully automatic and requires no input ex-
cept for the source code or byte code of API clients.
In particular, the analysis does not rely on formal spec-
ifications or test cases.

e We present the results of applying the approach to
real-world Java programs that use the Swing API. The
results show that programming errors related to brit-
tle parameters occur in practice and that the analysis
detects them effectively.

2. APPROACH

The following section presents a static analysis to reveal
method arguments that are unexpected by a callee despite
having a type compatible with the declared parameter type.
The approach is designed for analyzing calls from API clients
to API methods. Figure 3 provides an overview of the anal-
ysis. As input, the analysis requires the source code or byte
code of API clients. The first step is a static analysis that
inspects all calls from the clients to API methods to ex-
tract information about the type of arguments passed to
API methods. We call this information argument type ob-
servations. The second step is to search for anomalies in the
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Figure 3: Overview of the approach.

argument type observations. Based on the assumption that
most of the observations correspond to correct API usages,
this step identifies calls where the observed argument type
suggests an incorrect API usage. An anomaly occurs when
(i) the API method has a brittle parameter, and (ii) the
client passes an argument of an unexpected type.

2.1 Argument Type Observations

The goal of the first analysis step is to extract informa-
tion about the types of arguments that clients pass to API
methods. We represent this information as argument type
observations.

Definition 1 (Argument type observation)
An argument type observation is a tuple (Mciient, line, mapr,
pos, type), where:

® Mciient IS the signature of the client method that calls
the API method,

e line Is the source code line of the call to the API
method,

e mapy Is the signature of the called API method,

e pos € N is the position of the argument in the list of
arguments passed to mapy (starting at 1), and

e type is a type that the argument at position pos may
have.

2.1.1 Points-to Analysis

To extract precise argument type observations, our anal-
ysis leverages points-to information obtained from a state of
the art points-to analysis [9]. The points-to analysis stati-
cally reasons about the objects that may occur at runtime
of a program and about the references that may point to
each object. Potential runtime objects are represented by
abstract objects. We access the results of the points-to analy-
sis with a function P2A that, given a reference r, returns the
set P2A(r) of abstract objects to which r may point. Each
abstract object has an associated type. Unless specified oth-
erwise, we use a context-insensitive points-to analysis with
on the fly call graph construction. While context-sensitive
analysis could provide even more precise argument type ob-
servations, we build upon a context-insensitive analysis to
ensure that the approach scales to large programs.

Using a points-to analysis increases the precision of the
extracted argument type observations, and therefore, the
overall precision of our approach. However, the main idea of
this work is independent of points-to analysis, and it can be
pursued without any points-to information. In Section 3.7,
we compare the results of our approach with and without
points-to information.

Algorithm 1 Extract argument type observations from an
API client.
Input: Program P that uses API A
Output: Set of argument type observations O

1: O« 0

2: for all ¢ € allCalls(P) do

3: if caller(c) € P A callee(c) € A then

4 G + arguments(c)

5 for pos < 1,|G| do
6: r + reference(G(pos))
7
8
9

if P2A(r) # 0 then
for all o € P2A(r) do
obs « (caller(c),line(c), callee(c), pos,

type(0), tpzagr)

10: O + O U {obs}

11: end for

12: else

13: obs + (caller(c), line(c), callee(c), pos,
type(r), 1)

14: O «+ O U{obs}

15: end if

16: end for

17:  end if

18: end for

2.1.2  Extraction Algorithm

Algorithm 1 summarizes how the analysis extracts argu-
ment type observations from a program. The analysis visits
each method call in the program. If the callee of a call is an
API method, it will be further analyzed (line 3). Calls to
client types that inherit from API types are analyzed if the
declaring type of the callee is an API type.

For a call to an API method, the algorithm analyzes each
of its arguments. An argument is represented by a reference
(line 6), which, for example, corresponds to a local variable
or a field. The analysis is performed on an intermediate pro-
gram representation that has an explicit reference for each
argument, even if there is no such reference in the source
code. For example, the statement m2(m1()), which passes
the return value of a call to m1() as an argument to m20), is
represented by storing the result of m1() into a fresh local
variable, and afterwards passing this variable to m2().

For each argument reference r, the analysis checks whether
the points-to analysis knows any abstract objects that r may
point to (line 7). If so, then the analysis creates an argument
type observation for each abstract object o that » may point
to. The observation states that the argument passed to the
API method can have the type type(o), that is, the most
specific type that the points-to analysis knows for o. If r
may point to multiple abstract objects, the analysis creates
a separate observation for each abstract object. Doing so
naively can lead to many observations for a single call site,
giving this call site a higher weight than other call sites.
Since we want to give each call site the same weight when
analyzing the API usage of a client, we extend the definition
of argument type observations by adding a confidence value:

Definition 2 (Argument type observation, extended)
An argument type observation is a tuple (Meciient, line, mapr,
pos, type, conf), where:

® Mciient IS the signature of the client method that calls
the API method,



1 class API {

2 void m(Object o, Component c) { .. }
3}

4

5 class Client {

6 API api;

7 void n() {

8 Foo f = new Foo();

9 Component c;

10 if (..) ¢ = new JLabel();

11 else ¢ = new Button();

12 api.m(f, c); // call to API method
13 }

14}

Listing 1: Example of extracting argument type ob-
servations.

e line Iis the source code line of the call to the API
method,

e mapy Iis the signature of the called API method,

e pos € N is the position of the argument in the list of
arguments passed to map;y (starting at 1),

e type is a type that the argument at position pos may
have, and

e conf € [0,1] indicates the confidence that the argu-
ment has this type.

When creating multiple observations for a single argu-
ment reference r that may point to different abstract objects,
the analysis sets the confidence of each such observation to
m. That is, the more types the analysis observes for a
single call site, the less confidence it has into each individual
observation. By dividing the confidence, the analysis gives
the same weight to all call sites in the program.

The points-to analysis may not know any abstract object
for an argument reference r (line 12). For example, this
happens if r is a parameter obtained by the caller method
caller(c) and if there is no known call site where caller(c)
is called. However, caller(c) may nevertheless be called, for
example, in source code that is not part of the analyzed code
base, such as sub-projects of a project or external plug-ins.
Therefore, we also analyze calls where no abstract objects
are known for the arguments. In this case, the analysis con-
siders the declared type of the argument and creates an ob-
servation for this type (line 13). This observation has confi-
dence one, because the analysis makes a single observation
for the call site.

2.1.3 Example

We illustrate extracting argument type observations with
the simple example in Listing 1. Class Client calls an API
method and passes two arguments (line 12). The analysis
extracts three observations from this call:

e (Client.n(),12, API.m(Object, Component), 1, Foo, 1)
This observation describes that the first argument for
the API method has been observed to be of type Foo.
Since this is the only possible type for this argument,
the observation has confidence one.

e (Client.n(),12, API.m(Object, Component), 2, J Label,
0.5)

Algorithm 2 Find anomalies in argument type observa-
tions.

Input: Sets of argument type observations Oy,..., O,
Output: Set of warnings W

1: Orqw  merge(On,...,0)

2: O « preprocessObs(Oraw)

3: Myaw < param20bs(O)

4: M < preprocessParams(M qw)

5 W<+ 0

6: for all (p,0,) € M do

7. T < histogram(O,)

8 if |Op| > bops A |[dom(T)| < Biypes then
9: %eviant —

10: for all t € dom(T) do

11: con finel %

12: con fexel %

13: if con fezet — confinct > Gcony then
14: Tieviant — Tiem’ant @] {t}

15: end if

16: en% for _

17: if 72’5507”%'“ i < Odeviant then
18: W<+~ Wuo,

19: end if
20:  end if
21: end for

This observation describes that the second argument
passed to the API method has been observed to be of
type JLabel. The local variable ¢ may point to two
abstract objects, which have type JLabel and Button,
respectively. Therefore, the analysis splits the confi-
dence and assigns confidence 0.5 to this observation.

e (Client.n(),12, API.m(Object, Component), 2, Button,
0.5)
This observation is similar to the previous observation,
but for the argument type Button.

For the last two observations, the analysis relies on points-
to information. Without it, the observed argument type for
reference c is Component and the last two observations would
be merged into a single observation with confidence one.

2.2 Detecting Anomalies

The second step of the approach, anomaly detection, has
two goals. First, we want to infer from argument type obser-
vations whether a method has brittle parameters. Second,
we want to reveal calls to methods with a brittle parame-
ter where the caller passes an argument of an unexpected
type. As input, the anomaly detection takes sets of argu-
ment type observations, each obtained from a different API
client. As output, it produces a set of warnings about obser-
vations of unexpected arguments. Algorithm 2 summarizes
the anomaly detection.

2.2.1 Preprocessing Argument Type Observations

As a first step, the analysis merges the argument type ob-
servations from different API clients (line 1 of Algorithm 2).
The merge function generalizes argument type observations
to make them more comparable and then computes the union
of the sets of observations. We generalize observations refer-
ring to client-specific types that are subtypes of API types.



1 interface APIItf1 { .. }

2 interface APIItf2 extends APIItf1 { ..
3 interface APIItf3 extends APIItf1 { ..
4
5

]

class API {
void m(APIItf1 i1) { .. }
6 }

8 class ClientType implements APIItf2, APIItf3 { .. }
o class Client {

10 API api;

11 void n() {

12 api.m(new ClientType());
13 }

14}

Listing 2: Example of generalizing observations by
replacing client-specific types with their API super-

types.

// call to API method

The analysis checks for each observed, client-specific argu-
ment type tq.ry whether it has a supertype taps that is de-
fined in the API and that is compatible with the type de-
clared by the callee. If such a supertype exists, the analysis
adapts the observation by replacing tqry with the supertype
tapr. If targ has multiple most specific API supertypes, the
analysis replaces the observation with a set of observations,
one for each most specific API supertype. In this case, the
confidence of the new observations is the confidence of the
old observation divided by the number of new observations.

For example, consider Listing 2. The analysis extracts the
following observation:

(Client.n(),12, API.m(APIItf1),1, ClientType, 1)

From this observation, the analysis cannot draw any conclu-
sions about other clients, because the argument type Client-
Type is client-specific. However, ClientType implements the
API interfaces APIIt£2 and APIIt£3, which both are compat-
ible with the declared parameter type APIItf1. In this case,
the analysis splits the observation into two new observations:

(Client.n(),12, API.m(APIItf1),1, APIItf2,0.5)

(Client.n(), 12, API.m(APIItf1),1, APIIt§3,0.5)

These generalized observations are useful for analyzing other
API clients, because they refer to API types.

After merging observations from different API clients, the
analysis removes observations from which we cannot infer
any information (line 2). The preprocessObs function re-
moves all observations where the declared parameter type is
a primitive type, because primitive types have no subtypes
in Java.

Next, the analysis groups observations by the declared pa-
rameter to which they refer (line 3). A declared parameter
is defined by a callee and a position in the list of parameters
of this callee. The map M,q., assigns to each parameter the
set of observations made for the parameter. While consider-
ing each pair of callee and argument position as a parameter
works reasonably well, we refine the notion of a parameter
to consider overloaded API methods that allow clients to
pass arguments of unexpected types. For example, consider
the following API class:

class API {
void m(Object o) { .. }
void m(Foo o) { .. }

}

The overloaded method m() allows clients to pass any ar-
gument with a type being a subtype of Object. That is,
from the client’s perspective both methods can be consid-
ered a single method m(0Object). The analysis considers such
cases by merging all parameters that are indistinguishable
from the client’s perspective into a single parameter. In the
example, observations for both m(0Object) and m(Foo) end up
in a single group that refers to a parameter of type Object.

After grouping observations by the parameter they refer
to, the analysis removes parameters where only a single ar-
gument type is observed. For such parameters, the analysis
cannot reveal any unexpected arguments, because either all
observed arguments are expected or all observed arguments
are unexpected. If all arguments are unexpected, the anal-
ysis cannot find the problem, because there are no observa-
tions to learn from.

2.2.2 Type Histograms

The main part of the anomaly detection iterates over all
parameters and their respective observations (line 6). For
each parameter, the analysis builds a type histogram T show-
ing how often each argument type is observed. T maps a
type t to the summed up confidence values of all observa-
tions with argument type t.

Figure 4 shows four examples of type histograms extracted
during the evaluation of this work. The examples illustrate
kinds of histograms that occur again and again, allowing us
to discuss how the anomaly detection should behave for each
of them.

Figure 4a shows two frequently occurring types, String
and GridBagConstraints, that are given to the second pa-
rameter of Container.add(Component,Object). This parame-
ter allows for specifying layout constraints for the compo-
nent that is added to a container via the first argument.
The expected type of the second argument depends on the
layout the container uses. The layouts defined in Swing ei-
ther expect a String describing constraints, or an instance
of GridBagConstraints, that is, exactly the types prevalent
in the histogram. The anomaly detection should not report
any warnings for this histogram, because all observed argu-
ment types are expected by the callee.

Figure 4b is the histogram for JMenu.add (Component), which
is discussed in the introduction. The declared parameter
type has many subtypes, but only a small number of ar-
gument types is observed. These observed argument types
correspond to the expected types specified in the API doc-
umentation (Figure 1). In addition to the expected types,
two argument types, JCheckBox and JTextField are observed
a single time each. These argument types correspond to
bugs. The anomaly detection should identify these anoma-
lies and report warnings for them.

Figure 4c is an example for a “long-tail” histogram, where
many different types occur as arguments. The parameter
type has various subtypes, and they are all expected by the
method. That is, the parameter is not brittle, and therefore
the analysis should not report any warnings. It is a challenge
to distinguish this kind of histogram from histograms such
as Figure 4b.

Figure 4d illustrates a parameter with relatively few ob-
servations. In this case, the analysis should not draw any
conclusions and should report no warnings.
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Figure 4: Four type histograms showing the frequency of argument types observed for a particular parameter.

2.2.3  Identifying Anomalies

Given type histograms such as those in Figure 4, how
can an analysis find unexpected arguments given to brittle
parameters while reporting as few false warnings as possible?

The analysis starts with the assumption that each ob-
servation is a potential anomaly and applies four filters to
remove observations that would be false warnings. An ob-
servation that passes all filters results in a warning reported
to the developer. In the following, we explain the four fil-
ters. Each filter has a threshold deciding which observations
to filter. In Section 3.6, we discuss and compare values for
these thresholds.

Minimum Number of Observations. The analysis ignores
all parameters with a number of observations smaller than
a threshold 6,45 (line 8 of Algorithm 2). This filter avoids
drawing conclusions from a small number of observations,
such as the histogram in Figure 4d. Setting 6,5 too high
removes valid warnings for parameters with a fair number
of observations, while choosing a value 6,55 that is too low
leads to false warnings.

Maximum Number of Types. The analysis ignores all pa-
rameters for which the number of observed argument types
exceeds a threshold Oyypes (line 8). The rationale behind this
filter is that parameters for which a large number of types is
observed often are not brittle, and that instead all subtypes
of the declared parameter type are expected. In particular,
this filter removes long-tail histograms, such as Figure 4c.
Setting O¢ypes too low removes valid warnings, while setting
it too high introduces false warnings.

Minimum Confidence Drop. The analysis computes a con-
fidence value indicating how confident it is that a given type
histogram describes a brittle parameter. This confidence is
the summed up confidence of all observations in the his-
togram divided by the number of observed argument types.
If the confidence drops when adding a particular argument
type to a histogram, then this argument type deviates from
an otherwise accepted rule. The analysis compares the con-
fidence with and without a type ¢ for each type ¢ in a his-
togram and ignores all types where the confidence drop is
below a threshold Ocons (line 13). Setting fcons too high re-

moves valid warnings, while setting it too low leads to false
positives.

Maximum Percentage of Anomalies. The analysis removes
all warnings for a parameter if the percentage of suppos-
edly noteworthy observations for this parameter exceeds a
threshold O 4eyiant (line 17). The rationale for this filter is to
assume that most observations correspond to correct API
usage. Setting Ogeviant too high removes valid warnings,
while setting it too low leads to false warnings.

2.2.4  Clustering Warnings

The final step of the analysis is to cluster the warnings
produced by Algorithm 2 to ease their manual inspection.
A cluster of warnings contains all warnings for a particular
parameter. We present warnings to developers in an inter-
active way, where the list of warnings to inspect depends on
the developer’s decisions on previous warnings. Confronted
with a warning, the developer can indicate whether the pa-
rameter is brittle. If so, then all calls that pass arguments to
this parameter are at risk to pass an unexpected argument
without a notice from the type system. In this case, the
analysis presents all warnings in the cluster, because they
may correspond to bugs. Otherwise, the analysis knows that
the cluster contains nothing but false warnings and therefore
omits further warnings from the cluster.

3. EVALUATION

We evaluate our approach by analyzing 21 programs and
their usage of the Java Swing API. The evaluation focuses
on the following questions:

e How effective is the approach in finding arguments of
unexpected types?
The analysis reveals 15 previously unknown bugs and
code smells. In its default configuration, 47% of all
reported warnings are relevant problems. To measure
how many unexpected arguments the analysis misses,
we seed bugs into programs. The analysis detects 83%
of them.

e Does the approach scale to real-world programs?
Analyzing all 21 programs (650 KLoC) takes 23 min-
utes.



Table 1: Programs used for the evaluation.

Table 2: Classification of warnings in real programs.

Program Lines of code  Argument

All API-rel. type obs.
ArgoUML 0.34 156,305 79,950 7,726
Class Editor 2.23 10,121 5,643 1,796
Dublin Core Ousia 11-01-11 6,724 3,147 583
Figoo 2.6.0 12,911 11,965 5,758
File Renamer 0.1.1 1,328 726 236
FormLayoutMaker 8.2.1rc 4,239 4,152 814
hirudo 0.7 2,642 1,569 518
id3tidy 0.3beta 2,097 829 294
jEdit 4.5prel 103,332 67,637 7,441
JFreeChart 1.0.14 93,460 66,733 7,039
JFtp 1.53 23,511 16,180 2,958
JGraph 1.9.0.2 45,768 28,484 2,135
JPropsEdit 1.0.2 3,374 3,005 883
myPomodoro 1.0 2,510 1,960 506
nTorrent 0.5.1 36,290 4,949 901
outliner 1.8.10.6 35,407 23,434 3,499
pdfsam 2.2.1 15,567 12,197 3,933
Protégé 3.3 68,383 29,812 3,146
Scrinch 1.1.1 13,122 9,193 3,677
Stringer 1.0betal 8,947 5,438 1,366
uBlogger 20090914 3,206 2,922 1,024
Sum 649,244 379,925 56,233

o What is the influence of the thresholds used for detect-
ing anomalies?
We run the analysis with different values for each thresh-
old, discuss their trade-offs, and propose a default con-
figuration.

e What is the influence of the points-to analysis?
Comparing the approach with and without points-to
analysis shows that points-to analysis increases preci-
sion, but that it is not crucial for the approach.

3.1 Implementation

We implement our approach into a practical tool for an-
alyzing Java programs. The implementation of the static
analysis is based on the Soot framework 2.5.0 [22] and its
implementation of the Paddle points-to analysis [9]. We en-
able Soot’s option to consider all methods of program classes
to be reachable and exclude classes in third-party libraries
from the analysis.

3.2 Experimental Setup and Measurements

Table 1 lists the programs used in the evaluation. For
each program, we give the number of non-comment, non-
blank lines of Java source code, in total 650 KLoC. The
third column shows an estimate of the number of lines of
code related to the Swing API. We estimate this number
by counting the source code lines of all classes that import
from the java.awt or javax.swing packages. The last column
shows how many argument type observations the analysis
extracts from each program. In total, the analysis extracts
56,233 observations.

We inspect warnings manually and classify them into three
categories [23, 7, 16]. Bugs are problems in the API usage
that affect the correctness of the program. Since we focus
on the Swing API, the bugs we find typically lead to visual

Configuration = Warnings Bugs Smells True pos.
Default 19 5 4 47%
Recall-focused 155 11 4 11%

1 class FilteredListModel extends AbstractListModel {
2 void setFilter(String filter) {

3 Runnable runner = new Runnable() {

4 public void run() {

5 // .. update internal state ..

7 // BUG: first argument must be a ListModel
8 fireContentsChanged(this, 0, getSize() - 1);
9 }

10 };

11 SwingUtilities.invokeLater (runner) ;

12 T

13}

Listing 3: Bug in jEdit.

glitches or they disable some functionality. Code smells are
problems that affect performance or maintainability of the
program but not its correctness. We say true positives to
refer to both bugs and code smells. All other warnings are
false positives.

We quantify the effectiveness of the analysis by measuring
precision and recall. Precision means the percentage of true
positives among all reported warnings. Recall is the per-
centage of true positives that the analysis reports among all
true positives in the program. Since we do not know all true
positives in the analyzed programs (if we had a practical way
to find them, this paper would be obsolete), we only report
the recall of seeded bugs, where we know by construction
where problems in a program reside.

The anomaly detection allows for controlling the trade-
off between precision and recall with threshold parameters.
In Section 3.6, we evaluate the influence of each threshold.
For evaluating the effectiveness of the approach in finding
anomalies, we use two configurations:

e Default. This configuration is a pragmatic compro-
mise between maximizing true positives and minimiz-
ing false positives. The parameters are (using the
notation from Algorithm 2) 6ops = 30, Oiypes = 6,
oconf = 10, and Odemm = 0.05.

e Recall-focused. This configuration offers the possibility
to reveal more true positives than the default config-
uration, but leads to significantly more false positives.
The parameters are 0ops = 25, Oiypes = 10, Ocons = 1,
and Ogeviant = 0.5.

3.3 Anomalies in Real Programs

The analysis finds 15 previously unknown bugs and code
smells in the programs from Table 1. Some of them have
already been fixed as a result of our bug reports. Table 2
shows the number of reported warnings and their classifi-
cation for both configurations. The default configuration
gives a true positive rate of 47%, that is, about half of the
reported warnings are relevant for a developer. The recall-
focused configuration reveals six bugs that are not found in
the default configuration. The price for finding these addi-
tional bugs is a lower true positive rate.



1 class InsomniacClient {

2 JPanel p = new JPanel();

3 JList list = new JList();

4 InsomniacClient () {

5 /o

6 JScrollPane pane = new JScrollPane(list);
7 // BUG: Two nested scroll panes

8 p.add(new JScrollPane(pane));

9 }

0}
Listing 4: Bug in JFtp.

Listing 3 shows a bug that the analysis finds in jEdit. The
first parameter of fireContentsChanged(), called in line 8, is
brittle: The declared parameter type is Object, but the doc-
umentation clearly states that it must be a ListModel. Our
analysis infers this constraint from calls to this method and
reports a warning because the first argument in Listing 3 is
of type Object. The problem is that the programmer passes
this, which refers to the Runnable and not to the surround-
ing class FilteredListModel. We reported this bug to the
developers and they fixed it within a single day.?

Listing 4 is a bug found in JFtp.* The program wraps
a list into a scroll pane to add scroll bars to it (line 6)
and subsequently wraps this scroll pane into another scroll
pane (line 8). The result are scroll bars surrounded by scroll
bars—certainly undesired behavior. The analysis finds this
problem because JScrollPane occurs only once as argument
type of JScrollPane’s constructor, while several other types
occur frequently.

The analysis finds a bug in nTorrent, which is illustrated
in Figure 2. It has been confirmed as a bug in response
to our bug report.> Five bugs (in Protégé, jEdit, and Ar-
goUML) are due to using look and feel-specific color classes,
which lead to visual glitches if the programs run with an-
other look and feel than expected by the programmers. The
analysis finds these bugs because the look and feel-specific
classes appear as argument types instead of the much more
common type Color. Two bugs (in JFreeChart and Scrinch)
pass unexpected arguments to Graphics2D.setClip(Shape).
According to the documentation only particular subtypes of
Shape will lead to the expected behavior. Another bug (in
jEdit) is a JTextField added to a JMenu, which is unexpected
as shown in Figure 1.

The four code smells found by the analysis affect perfor-
mance and maintainability. Two warnings (in JPropsEdit)
are about passing a newly created JLabel as a message to
JOptionPane.showMessageDialog(). The API documentation
states that messages are converted to Strings by the API
implementation and afterwards wrapped into a JLabel. A
client cloning this behavior creates useless labels. The analy-
sis warns about Protégé passing a JComponent to a BoxLayout.
The underlying problem is that a class in Protégé extends
JComponent instead of the typically extended JPanel. Finally,
we find a problem in Scrinch, where a StringBuffer is passed
as the message of a dialog. Since the programmer obviously
does not want the API to modify the string, passing a String
instead of the mutable StringBuffer would be safer.

The false positives reported by the analysis have two main
reasons. First, we get false positives because some argument

3Gee issue 3477759 in jEdit’s bug database.
4See issue 3484625 in JFtp’s bug database.
®See issue 136 in nTorrent’s bug database.

types that occur infrequently are nevertheless correct. For
example, the analysis extracts 77 observations for GroupLay-
out.setHorizontalGroup(Group): 76 observations with Paral-
lelGroup as argument type and a single observation with
SequentialGroup as argument type. The parameter is not
brittle, that is, both argument types are expected, but the
analysis cannot distinguish this case from cases like Fig-
ure 4b. Second, we get false positives because the static
analysis extracts imprecise observations. For example, the
first argument of ActionMap.put(Object,Action) is typically a
String, but the analysis warns about code where an Object
is observed. Manual inspection of the source code shows
that the argument will be a String for all possible program
paths, but the static analysis fails to find it.

In summary, we find that errors related to brittle param-
eters exist in practice and that the analysis is effective in
finding them. Many of the bugs that the analysis reveals
are hard to detect with traditional testing techniques. These
bugs do not raise an exception or trigger any other obvious
misbehavior. Instead, many bugs lead to malfunctions of
the user interface or to incorrectly displayed GUI elements.

3.4 Automated Evaluation with Seeded Bugs

In addition to evaluating the effectiveness of the analy-
sis in finding real bugs, we seed bugs into programs. With
seeded bugs we know by construction where problems in a
program reside and do not require a human to inspect warn-
ings. Seeding bugs not only allows us to evaluate the analysis
with a large number of anomalies, but also to measure the
recall of the analysis.

To seed bugs related to brittle parameters, we must know
about argument types that are not expected by a callee but
nevertheless compatible with the declared parameter type.
To find those types, we manually search the documentation
of the Swing API for descriptions of brittle parameters. The
result is a list of 14 API methods, each declaring a parameter
of type T but expecting a proper subset of T’s subtypes as
argument. Based on the list B of known brittle parameters,
we seed bugs into the programs from Table 1. For each
program P, we repeatedly do the following:

1. Randomly select a parameter p from B. The prob-
ability to choose parameter p is proportional to the
number of calls of p’s API method in P.

2. Randomly select an argument type ¢t from all types
that are compatible with p but that are not among
the expected types for p. The probability to choose a
type t is proportional to the number of references with
type t in P.

3. Add an argument type observation stating that t is
passed to p.

4. Run the analysis to check whether it finds the seeded
bug.

The seeding technique chooses API methods and argu-
ment types according their frequency in the analyzed pro-
gram to simulate errors that programmers could make.



For each seeded bug, we run the analysis and measure its
precision and recall:
#true positives
F#true positives + #false positives

precision =

1 if the seeded bug is found
recall = .
0 otherwise

The number of true positives is one if the analysis finds the
seeded bug and zero otherwise. Based on the assumption
that the programs are correct except for the seeded bug, all
other reported warnings are considered to be false positives.
We make this assumption more realistic by ignoring the 15
known bugs and code smells described in Section 3.3. Yet,
the measured precision is an under-approximation, because
some of the warnings we count as false positives may in fact
be true positives that we did not inspect manually.

We seed 100 bugs into each program from Table 1 and
compute the average of the results from all runs of the analy-
sis. In the default configuration, the analysis has a precision
and a recall of 83%. The recall-focused configuration raises
recall to 94% but reduces precision to 11%. These results
show that the analysis reveals most of the seeded bugs, even
in the default configuration.

3.5 Performance

On a standard PC (Intel Core 2 Duo with 3.16 GHz, using
2.5 GB of memory), analyzing all 21 programs takes 23 min-
utes. Analyzing the largest program, ArgoUML, takes eight
minutes. Most of the time (over 99%) is spent extracting ar-
gument type observations. We consider these performance
results to be acceptable for an automatic testing tool.

3.6 Thresholds of Anomaly Detection

Four thresholds control how strict the anomaly detection
is when searching anomalies (Section 2.2.3). In the follow-
ing, we analyze the sensitivity of the analysis to these thresh-
olds and illustrate the trade-offs when selecting thresholds.
We vary one threshold at a time, while leaving the others
at default values. Initially, we varied all four thresholds and
decided on the default configuration given in Section 3.2.

Figure 5 shows how precision and recall vary depending on
each threshold. For each threshold, we give the results from
analyzing the original programs (left) and from analyzing
programs with seeded bugs (right). For seeded bugs, we re-
port the F-measure, that is, the harmonic mean of precision
and recall.

The minimum number of observations (Figure 5a) con-
trols how many observations the analysis requires to give
warnings. We experiment with values between two and 200.
A high threshold leads to more warnings, increasing pre-
cision but decreasing recall. In contrast, a low threshold
gives higher recall but a lower precision. The figure illus-
trates the typical trade-off between avoiding false positives
and avoiding false negatives. Our default configuration is a
compromise between both objectives.

The maximum number of types (Figure 5b) specifies the
maximum number of different observed argument types for
a parameter for which the analysis reports warnings. We
experiment with values between two and 50 (Figure 5b shows
only values up to 15 because there are no significant changes
between 15 and 50). The figure shows that starting from a
relatively small number (three for real bugs and four for
seeded bugs), the threshold does not significantly influence
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Figure 5: Influence of thresholds on anomaly detec-
tion. The dashed vertical line indicates the default
configuration.



the results. Our default configuration is to allow up to six
different argument types.

The minimum confidence drop (Figure 5c) controls how
much the confidence in the brittleness of a parameter must
decrease by adding an argument type to a histogram for
the analysis to report a warning. We experiment with val-
ues between zero and 50. A small threshold leads to more
warnings, and hence, higher recall but lower precision. In
contrast, a larger threshold increases precision for the price
of reducing recall. As a default, we select a threshold that
maximizes the F-measure for seeding bugs.

The maximum percentage of anomalies (Figure 5d) limits
the degree of incorrectness that the analysis expects in the
programs. We experiment with values between 0.1% and
100%. For very small thresholds the analysis does not re-
port any warnings. At some point (3% for real bugs and
0.5% for seeded bugs), the analysis begins to report warn-
ings with high precision. Further increasing the threshold
reduces precision while slightly increasing recall. We choose
a default threshold that gives reasonable precision.

3.7 Influence of Points-to Analysis

Using a points-to analysis while extracting argument type
observations has a significant performance impact. While
points-to analysis can have benefits as illustrated by the ex-
ample in Listing 1, it is unclear how these benefits manifest
in practice. Therefore, we evaluate our approach without
points-to analysis and compare the results to the approach
as described in Section 2. To disable points-to analysis, the
approach remains as in Section 2 except for the P2A func-
tion, which always returns an empty set. That is, we assume
that the points-to analysis never knows any abstract object
that a reference points to, and therefore our analysis always
considers the statically declared type of arguments.

The comparison shows that the precision of finding seeded
bugs decreases from 83% to 76% when abandoning points-to
information. In contrast, the precision of finding real bugs
and the recall of seeded bugs remain the same. We conclude
that points-to analysis has an influence, but that it is not
crucial for the overall approach. Since the performance of
our approach is reasonable when using a points-to analysis,
we leverage the benefits of this analysis technique.

4. DISCUSSION

The problem of brittle parameter typing exists in various
APIs. For example, the Command class in the Eclipse Plat-
form/Core API has a method compareTo(Object) that ex-
pects a Command instance as the parameter. Another example
is the Java XPath API: The XPath class provides a method
evaluate(String, Object) that expects instances of Node as
the second parameter. To adapt our analysis to an arbitrary
API, it suffices to pass the appropriate API packages to Al-
gorithm 1. The approach is particularly well-suited for APIs
that have evolved over time, because this evolution often in-
troduces brittle parameters. For such APIs, there typically
exist various client programs to analyze, because otherwise
there would be no reason to evolve the API.

To deploy our analysis, one could extract information on
brittle parameters from many API clients and persist it in
a knowledge base. This knowledge base can then be used to
quickly check new API clients, which, once they reach some
level of maturity, can contribute to the knowledge base.

S. RELATED WORK

The problem we address goes back to Liskov’s substitu-
tion principle, which proposes that an instance of a subtype
should behave in the same way as an instance of a super-
type, when being used through the supertype’s interface [11].
Statically-typed, object-oriented languages typically follow
this principle and enforce it syntactically, for example, by re-
stricting how subtypes can change method signatures. How-
ever, these syntactic restrictions do not guarantee that sub-
type instances are semantic substitutes for supertype in-
stances, leading to the problem of brittle parameters.

Recent work on “related types” addresses the problem of
calls that become trivial because the actual argument type
is unrelated to the formal type of the receiver [24]. Their ap-
proach requires annotating API methods, whereas our anal-
ysis infers expected argument types. Another difference is
that our approach can deal with expected argument types
that are scattered over the type hierarchy, that is, argument
types not precisely describable with a single supertype.

The “extract superclass” and “extract interface” refactor-
ings [5] create new types that provide the common interface
of a set of existing types. They can be used to remove brit-
tle parameter typing by introducing a type that precisely de-
scribes the parameters expected by a method and by making
this new type the declared parameter type. Unfortunately,
this approach is only feasible if it is possible to add a new
supertype to all the expected types, which is, for example,
not true if an expected type is declared in another library.
The “generalize type” refactoring [21] replaces the declared
type of a variable or a parameter with a more general type to
reduce coupling and to increase extensibility. The problem
we address in this paper is the result of using too general
types for method parameters.

Our work is an anomaly detection technique that reveals
errors by searching parts of a program that deviate from
the norm. Several other approaches following this idea have
been proposed in the past. All of them address different
kinds of bugs than errors related to brittle parameters. En-
gler et al. [3] propose a static analysis framework to iden-
tify and check system-specific rules based on rule-templates.
Several approaches search for missing method calls by learn-
ing which calls usually happen in a particular context [10, 2,
19, 23, 15, 20, 14]. Other work finds violations of method call
protocols through anomaly detection [6, 17]. Lu et al. search
for concurrency-related errors by inferring access interleav-
ing invariants [13] and variable access correlations [12]. Fi-
nally, we previously presented an anomaly detection tech-
nique to find bugs related to equally-typed method argu-
ments that programmers may accidentally pass in an incor-
rect order [16]. All these approaches are complementary to
this paper, because they target different kinds of bugs than
this work.

Ernst et al. [4] and Hangal et al. [8] propose to extract
invariants over variables and to use them for finding errors.
Similar to our work, these approaches leverage the observa-
tion that variables are expected to have only a subset of all
values possible according to their declared type. Our work
differs by considering subtypes of declared reference types in-
stead of concrete values of primitive types. Hangal et al. [§]
propose a metric for the confidence that an invariant holds
and use it for deciding whether to warn about a violation of
the invariant. We adapt this metric to our anomaly detec-



tion and use it to filter observations based on a minimum
confidence drop (Section 2.2.3).

APIs with multiple clients allow for cross-project analysis.
Zhong et al. [25] mine API clients to derive recommendations
of code snippets. In contrast, our approach reveals bugs in
the analyzed client programs. Gruska et al. [7] analyze 6,000
projects with an anomaly detection technique. In previous
work, we leverage API clients to extract API usage protocols
and to check clients for protocol violations [18]. Both [7]
and [18] cannot find bugs related to brittle parameters.

6. CONCLUSIONS

Methods that expect fewer argument types than those
that are compatible with the declared parameter type pose
a risk at its callers. If a caller passes an argument of an
unexpected type, this error slips through the checks of the
type system. Complex APIs often have methods with brit-
tle parameters. Yet, to the best of our knowledge, no ex-
isting technique searches bugs related to such methods. In
this paper, we propose a simple yet effective static analysis
that warns developers about unexpected arguments given
to brittle parameters. The approach finds various issues in
real-world programs with a precision and a recall making it
applicable in practice.

We draw three conclusions from this work. First, brittle
parameter typing and the problems resulting from it exist
in practice. Our results contain various examples of brittle
parameters in a real-world API. Furthermore, we find that
programmers are susceptible to errors related to brittle pa-
rameter typing. Second, an automatic bug finding technique
can be effective despite being simple. Third, leveraging mul-
tiple clients of the same API reveals knowledge that may not
be apparent from analyzing a single client, and this knowl-
edge is useful for finding bugs.

Implementation and experimental results:
http://mp.binaervarianz.de/issta2012
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