
SCALA ROLES
A Lightweight Approach towards Reusable Collaborations

Michael Pradel1 ∗ and Martin Odersky2

1 TU Dresden, 01062 Dresden, Germany
2 EPFL, 1015 Lausanne, Switzerland

michael@binaervarianz.de, martin.odersky@epfl.ch

Keywords: Object-orientation, programming languages, roles, collaborations, reuse, dynamic proxy

Abstract: Purely class-based implementations of object-oriented software are often inappropriate for reuse. In contrast,
the notion of objects playing roles in a collaboration has been proven to be a valuable reuse abstraction.
However, existing solutions to enable role-based programming tend to require vast extensions of the underlying
programming language, and thus, are difficult to use in every day work. We present a programming technique,
based on dynamic proxies, that allows to augment an object’s type at runtime while preserving strong static
type safety. It enables role-based implementations that lead to more reuse and better separation of concerns.

1 INTRODUCTION

Software objects represent real-world entities. Often,
those entities fundamentally change during their life-
time. Also, there may be different views on an object
depending on the context. One way to express this in
a programming language is by dynamically adapting
the type of objects by enhancing and reducing the set
of visible fields and methods.

Another issue tackled in this paper is reuse, one
of the major goals in software engineering. Reuse is
the process of creating software systems from exist-
ing software rather than building it from scratch. In
object-oriented programming languages, classes ab-
stract over sets of objects according to common prop-
erties and behavior. Though, relations between ob-
jects are usually manifold. In a traditional approach,
this is reflected by a complex network of intercon-
nected classes. As different contexts in which objects
collaborate are not explicit in a purely class-based
approach, reusing a particular object collaboration is
difficult.

The software modeling community has been dis-
cussing since long a promising solution: role model-
ing or collaboration-based design (Reenskaug et al.,

∗This work has been accomplished during a stay of the
first author at the second author’s lab.

1996; Riehle, 2000; Steimann, 2000). The main idea
is that objects play roles, each describing the state and
behavior of an object in a certain context. In other
words, a role provides a particular view on an object.
Similar to objects, roles can be related to each other,
for instance by references, field accesses, and method
calls. A number of related roles form a collabora-
tion. As objects can be abstracted by classes, roles
are abstracted by role types, that can be thought of as
partial classes. A typical example is an instance of a
class Person that may play the role of a Professor
(related to a role Student) and the role of a Father
(related to Child and Mother). We can separate
both concerns into two collaborations University
and Family. Roles and collaborations permit to ex-
plicitly describe interwoven relations of objects, and
hence, provide an interesting reuse unit orthogonal to
classes.

While roles are accepted in modeling (see for
example UML collaborations (Object Manage-
ment Group OMG, 2007)), they are rare in today’s
programming languages. Most of the proposed
solutions (Bäumer et al., 1997; Herrmann, 2007;
Smaragdakis and Batory, 2002) either do not fully
conform to the commonly used definition of the
role concept (Steimann, 2000) or require extensive
changes in the underlying programming language.
The latter makes them hard to employ in every



day work since existing tools like compilers and
debuggers cannot be used. In this work, we propose a
lightweight realization of roles in the Scala program-
ming language (Odersky, 2008). It can be realized as
a library, that is, without any language extension.

Listing 1 gives a first glimpse of our solution. In
the first line, a class Person is instantiated. The con-
texts in which the person occurs are represented by
collaborations, that are instantiated in lines 4 and 5.
In the following, the object is accessed playing the
roles of a professor and a father (lines 8 and 11), as
well as without any role (line 14). More details on
our approach and other examples follow in Sections 3
and 4.

1 val p = new Person("John")
2

3 // collaborations are instantiated
4 val univ = new University{}
5 val fam = new Family{}
6

7 // person in the university context
8 (p as univ.professor).grade_students()
9

10 // person in the family context
11 (p as fam.father).change_diapers()
12

13 // person without any role
14 p.name // "John"

Listing 1: A person playing different roles.

The major thrust of this paper is to show that pro-
gramming with roles is feasible in a lightweight fash-
ion. More specifically, our contributions are the fol-
lowing:

• A programming technique for roles that might be
applicable to most object-oriented programming
languages. It is based on compound objects man-
aged by dynamic proxies.

• A role library for Scala that allows to dynamically
augment an object’s type while preserving strong
static type safety.

• A novel reuse unit, dynamic collaborations, that
captures the relations of objects in a certain con-
text.

The following section summarizes the idea of
roles and collaborations in object-oriented program-
ming languages. Our approach is explained in detail
in Section 3, followed by Section 4 giving concrete
examples of augmenting types and reusing the Com-
posite design pattern as a collaboration. Finally, a
short overview of similar approaches is given in Sec-
tion 5.

2 OBJECTS AND ROLES

There are many different definitions of roles in the
literature (Guarino, 1992; Kristensen and Oster-
bye, 1996; Reenskaug et al., 1996; Riehle, 2000).
Steimann (Steimann, 2000) gives a comprehensive
overview and presents a list of role features, whereof
the following are the most essential.

• A role comes with its own properties and behav-
ior.

• Roles are dynamic, that is, they can be acquired
and abandoned by objects at runtime. In partic-
ular, a role can be transferred from one object to
another.

• An object can play more than one role at the same
time. It is even possible to play two roles of the
same role type multiple times (in different con-
texts).

• The state and the members of an object may be
role-specific. That is, binding a role to an ob-
ject can change its state as well as its fields and
methods.

Roles are a relative concept, in the sense that a
role never occurs alone, but always together with at
least one other role. Related roles form a collabora-
tion as shown in Figure 1, where a role drawn on top
of an object indicates that the object plays the role.
Possible relations between roles, such as references,
field accesses, and method calls, are abstracted by a
connecting line.

object 1
role 1

object 2

role 2 role 4

object 3
role 3 role 5

Figure 1: Roles 1 to 3, as well as roles 4 and 5 form two dis-
tinct collaborations that can describe independent concerns.

For a concrete example of the problem collabora-
tions aim to solve, consider a graphics library contain-
ing a class Figure and two subclasses BorderFigure
and TextFigure (Listing 2). These classes contain
members representing properties like colors or the
text in a TextFigure. Furthermore, we want to nest
figures, for instance putting a TextFigure inside a
BorderFigure. This can be realized with the Com-
posite pattern (Gamma et al., 1995) which creates a
tree-like data structure while allowing clients to treat



individual objects and compositions of objects uni-
formly.

1 class Figure {
2 var bgColor = white
3

4 def addChild(f: Figure)
5 def removeChild(f: Figure)
6 def getParent: Figure
7 protected def setParent(f: Figure)
8 }
9

10 class BorderFigure extends Figure {
11 var borderColor = black
12

13 def addChild(f: Figure) = { /* ... */ }
14 // implementations of other
15 // abstract methods
16 }
17

18 class TextFigure extends Figure {
19 var text = ""
20

21 // implementations of abstract methods
22 }

Listing 2: A figure hierarchy implementing the Composite
design pattern.

The code related to the Composite pattern is high-
lighted in Listing 2. We argue that, instead of being
added to the figure classes, it should be extracted into
a collaboration. This approach has two main advan-
tages:

• Separation of concerns. Figures have a number
of inherent properties (in our example colors and
text) that should be separated from the concern of
nesting them.

• Reuse. Instead of implementing the pattern an-
other time, we can reuse an existing implementa-
tion and simply attach it where needed.

Moving the highlighted code into supertypes is a
reasonable solution in some cases. A role-based ap-
proach, however, provides more flexibility since be-
havior can be attached at runtime to arbitrary objects.
Consequently, it can be applied without changing the
type hierarchy of the graphics library, and even with-
out access to their source code.

We propose to implement the Composite pattern
as a collaboration with two roles parent and child.
As a result, to access an instance of one of the fig-
ure classes being part of a composite, one can sim-
ply attach the parent or child role to it. As we
will explain in more detail in the following sections,
this is realized with the as operator in our approach.
For instance, someFigure as composite.parent
enhances the object someFigure with members re-
lated to being a parent in a composite.

3 COMPOUND OBJECTS WITH
DYNAMIC PROXIES

The purpose of this paper is to show how roles and
collaborations can be realized in programming. This
section explains our solution conceptually and shows
details of our implementation in Scala that may be
interesting for similar implementations in other lan-
guages. Our approach benefits from flexible language
features of Scala, such as implicit conversions and de-
pendent method types, and from the powerful mech-
anism of dynamic proxies in the Java API. The lat-
ter can be used since Scala is fully interoperable with
Java. However, the described programming technique
is not limited to a specific language. As we will argue
at the end of this section, the essence of it may be
carried over to other languages than Scala.

A major question is whether to implement roles
with objects or as a first-class language construct. We
opted for a lightweight solution that realizes roles as
objects which are attached to core instances dynami-
cally. One advantage is that the underlying program-
ming language need not to be changed and existing
tools like compilers can be used without modifica-
tions. However, this leads to the problem of having
multiple objects where only one is expected by pro-
grammers. For instance, a person playing the role
of a professor is represented by one core object of
type Person and one role object of type Professor.
Issues arising from that situation have been summa-
rized as object schizophrenia (Harrison, 1997). The
main problem to resolve is the unclear notion of ob-
ject identity that can, for instance, lead to unexpected
results when comparing objects.

We argue that one can avoid such confusion by
regarding a core object with temporarily attached role
objects as a compound object, as depicted in Figure 2.
The compound object is represented to the outside by
a dynamic proxy that delegates calls to the appropriate
inner object.

Role 1
Role 2

Core

ProxyClient

Figure 2: The proxy intercepts calls to the compound object
and delegates them via an invocation handler.

A dynamic proxy is a particular object provided
by the Java API. Its type can be set dynamically when



creating it through a list of Java interfaces. Internally,
dynamic proxies are realized by building and load-
ing an appropriate class file at runtime. The behav-
ior of the proxy is specified reflectively by an invoca-
tion handler, that is, an object providing an invoke
method that may delegate method calls to other ob-
jects.

We use a dynamic proxy to represent a role-
playing object. Thus, its type is made up of the core
object’s type and the types of the role objects that are
currently bound to it. The invocation handler of the
proxy has a list of inner objects, one core object and
arbitrary many role objects, and delegates calls to the
responsible objects. Policies mapping method calls
to inner objects may be specified if needed. A simple
default is to reflectively delegate to role objects when-
ever they provide the required method and to the core
object otherwise, such that roles may override the be-
havior of their core object.

Managing the compound object, creating a dy-
namic proxy with the appropriate type, and config-
uring the invocation handler is hidden from the user
through a single operator called as. The expression
object as role allows to access an object playing
a certain role by temporarily binding role to object.

In Scala, all method calls can be written as in-
fix operators. Hence, object as role is equiva-
lent to object.as(role). However, we want to
bind roles to arbitrary objects, that is, we cannot as-
sume object to provide an as method. In contrast,
we can easily add the inverse (but less intuitive to
use) method playedBy to role objects. The trick is
to use Scala’s implicit conversions (Odersky et al.,
2008) to turn a method call object.as(role) into
role.playedBy(object). An implicit conversion is
a special method inserted by the compiler whenever
an expression would not be otherwise type-correct.

1 implicit def anyRef2HasAs[Player <: AnyRef]
2 (core: Player) =
3 new HasAs[Player](core)
4

5 class HasAs[Player <: AnyRef]
6 (val core: Player) {
7 def as(r: Role[Player]) = r.playedBy(core)
8 }

Listing 3: An implicit conversion that adds the method as
to arbitrary objects.

The implicit conversion in lines 1 to 3 of Fig-
ure 3 wraps a core object into an instance of HasAs, a
class providing the required as method. The method
anyRef2HasAs has a type parameter Player which is
inferred from the type of the argument core. Player
is restricted by the upper bound AnyRef, Scala’s
equivalent to Java’s Object. The as method simply

calls playedBy on the role object (line 7). This re-
turns a proxy object having the type of the core ob-
ject, Player, extended with the type of the role ob-
ject, r.type. As a result, roles can be dynamically at-
tached to arbitrary objects writing object as role,
which gives type-safe access to core and role mem-
bers.

An interesting detail to note here is that the return
type of as is a dependent method type, an experimen-
tal feature of Scala. The return type of playedBy,
and consequently also of the as method, is Player
with r.type. Hence, the return type of the method
depends on the value of its argument r.

3.1 Object Identity

Another issue is to provide a clear notion of object
identity. We argue that the identity of an object should
be the same independent of whether roles are attached
or not. For instance, a person being a father is still the
same person, and consequently, object identity should
reflect this. To clarify the problem, consider compar-
ing objects and role-playing objects. Four kinds of
comparison are possible:

(1) object == (object as role)
(2) (object as role) == object
(3) (object as role) == (object as role)
(4) (object as role1) == (object as role2)

To achieve (seeming) object equality between ob-
jects and role-playing objects, we modify identity-
related methods of dynamic proxies. We use the
fact that == and the equals method are equiva-
lent in Scala. That is, the expressions x == y and
x.equals(y) give the same result. We define equals
and hashCode of proxies such that they map to the
implementation of the core object, and, in case the
right-hand operator of == is a proxy as well, compare
with its core object. Although this solves the prob-
lem for expressions 2 to 4, it unfortunately does not
for expression 1 since we cannot modify the equals
and hashCode methods of arbitrary objects using a
library approach. One possible solution would be
to require the type of core objects to inherit from a
type RolePlayer which contains an adapted equals
methods. If the argument of equals is a proxy, it
would compare with its core object, and otherwise fall
back to the default implementation of equals. How-
ever, this makes adding roles to arbitrary objects im-
possible. Finding a satisfactory solution for this issue
remains as future research.

So far, we have shown how arbitrary objects can
be dynamically enhanced with new functionality by
binding roles to them. Our solution provides strong
static type safety, that is, only members of either the



core object or a role object can be accessed without
a type error. Moreover, obstacles arising from object
schizophrenia can be solved with a compound object
represented by a dynamic proxy and an adapted no-
tion of object identity.

3.2 Collaborations with Nested Types

In the following, we delve into another important as-
pect of roles, namely grouping them into collabora-
tions. Per definition, roles do not occur alone, but de-
scribe the behavior of an object in a certain context.
This context is given by other roles yielding a set of
related roles called collaboration.

One of the basic principles of Scala is nesting of
types, allowing related types to be grouped and ex-
tended together by extending their outer type. Fol-
lowing this principle, a collaboration is presented by
an outer trait2 whose inner traits represent its roles.
Our role library provides a trait Collaboration that
concrete collaborations must extend. It contains an
inner trait Role that must be extended to define con-
crete role types. Most of the details like the playedBy
method creating the dynamic proxy, are implemented
in these base traits, such that collaboration develop-
ers do not have to bother with it. Listing 4 shows a
simplified version of the Collaboration trait.

1 trait Collaboration {
2 trait Role[Player <: AnyRef] {
3 def playedBy(core: Player):
4 Player with this.type = {
5 val handler =
6 new InvocationHandler(this, core)
7 createProxy(core, handler)
8 .asInstanceOf[Player with this.type]
9 }

10

11 private def createProxy
12 (core: Player,
13 handler: InvocationHandler) = {
14 val interfaces: Array[Class] =
15 getInterfaces(this, core)
16 Proxy.newProxyInstance
17 (core.getClass.getClassLoader,
18 interfaces, handler)
19 }
20 }
21 }

Listing 4: The collaboration trait that concrete collabora-
tions extend.

At first, we create an invocation handler (line 6).
It realizes the delegation of all incoming calls

2A trait is a type similar to a class, however, providing a
safe form of multiple inheritance. Traits can be thought of
as interfaces with an implementation. See (Odersky et al.,
2008) for further details.

to either the core object or the role object and
adds special treatment for the methods equals
and hashCode. Then, createProxy is called. It
reflectively retrieves Java interfaces for the core
object and the role object (line 15) and instantiates
a dynamic proxy via the Java API. The proxy has
the type of the core object, Player, and of the
role, this.type. Since newProxyInstance simply
returns a java.lang.Object, we down-cast the
proxy to Player with this.type before returning
it to the user (line 8). This cast can be done safely
as we configured the proxy to have exactly this type.
The benefit is that user code can be type-checked and
no further casts are necessary.

In this section, we have shown how objects with
dynamically changing types can be expressed with
dynamic proxies. Furthermore, the flexibility of Scala
permits to introduce a convenient syntax (the as op-
erator), and hence, hide unnecessary details from the
user. Collaborations can be expressed with nested
types.

Although we implement our approach in Scala,
we argue that its essence depends only on a small set
of language features, and hence, can be transferred to
other programming languages as well. There are two
basic ingredients: first, one requires a way to dynam-
ically create proxies whose type and implementation
can be specified reflectively. Second, a notion of in-
ner types is needed for collaborations. With minor
adaptations, they can be realized with inner classes
like those of Java. Other language features we used
for our implementation, such as implicit conversions
and dependent method types, help in providing a con-
venient syntax for using roles, but are not absolutely
necessary.

4 SCALA ROLES IN ACTION

While the above is part of a library, the following sec-
tion explains our approach from the perspective of
collaboration developers and users. Collaboration-
based programming has two major benefits. First,
binding roles to objects and accessing them type-
safely leads to a kind of type dynamism. It allows
to enhance and reduce the set of visible members of
objects at runtime without accessing its source code.
Second, collaborations provide a reuse unit orthogo-
nal to classes by encapsulating the behavior of mul-
tiple related objects. They focus on one specific as-
pect of a program, and thus, extract related code frag-
ments. This leads to better separation of concerns and,
possibly, reuse of a collaboration in different contexts.



In this section we give concrete examples illustrating
both benefits.

4.1 Persons and their Roles

A classical example for roles are persons behaving
specifically depending on the context, in other words,
persons having different roles. Consider, for instance,
the relation between a student at a university and his
supervisor. The student gains motivation when being
advised by the supervisor and wisdom when work-
ing, where the amount of gained wisdom depends on
the student’s current motivation. Assuming we have a
class Person that may also occur in other contexts,
supervisor and student can be modeled as roles of
it. Listing 5 shows a collaboration with two roles
supervisor and student, that are instances of the
role types Supervisor and Student.
1 trait ThesisSupervision
2 extends Collaboration {
3 val student = new Student{}
4 val professor = new Professor{}
5

6 trait Student extends Role[Person] {
7 var motivation = 50
8 var wisdom = 0
9 def work = wisdom += motivation/10

10 }
11 trait Supervisor extends Role[Person] {
12 def advise = student.motivation += 5
13 def grade =
14 if (student.wisdom > 80) "good"
15 else "bad"
16 }
17 }

Listing 5: A collaboration describing the relation between a
student and a supervisor.

A concrete collaboration must extend the abstract
trait Collaboration. Doing so, it inherits the in-
ner trait Role that can be extended by concrete roles.
Role takes a type parameter that specifies the type
of possible core objects playing the role. For roles
that may be bound to arbitrary objects, AnyRef can
be passed.

Listing 6 depicts how to use a collaboration. Paul
supervises Jim’s master project, and is, in his role as a
PhD student, himself supervised by Peter, a professor.
To use a collaboration, it must be instantiated (lines 8
and 9). Persons are accessed playing a certain role
with the as operator. A role must be qualified with a
collaboration instance. The main benefit of instantiat-
ing collaborations is that roles may be used multiple
times in different contexts.

Note that Paul plays different roles in the exam-
ple. While he occurs as Jim’s supervisor in line 12,
he takes the role of a student in line 14. In each

1 // a master student
2 val jim = new Person("Jim")
3 // a PhD student
4 val paul = new Person("Paul")
5 // a professor
6 val peter = new Person("Peter")
7

8 val master = new ThesisSupervision{}
9 val phd = new ThesisSupervision{}

10

11 (jim as master.student).work
12 (paul as master.supervisor).advise
13

14 (paul as phd.student).work
15 (peter as phd.supervisor).grade
16 (peter as phd.supervisor).name

Listing 6: Usage of the ThesisSupervision collaboration.
The person Paul plays different roles depending on the con-
text.

case, paul (seemingly) has a different type, and thus,
offers different members. As our solution provides
strong static type safety, calling the method advise
on (paul as phd.student) would result in a type
error during compilation.

It is also noteworthy that role-playing objects still
have the type of their core object. For instance, in
line 16, the field name that is defined in Person can
still be accessed. Furthermore, a role itself can always
access its current core object using a method core.
Hence, the implementation of the student role can, for
example, access the student’s name via core.name.

The state of the roles in a concrete collaboration
instance is preserved between different uses of the as
operator. These stateful roles allow transferring a role
and its state from one core to another. For instance,
suppose Peter retires as a professor at the end of List-
ing 6. A new professor can take over the supervi-
sion of Paul by binding the supervisor role to him:
newProf as phd.supervisor.

4.2 Composite Design Pattern

The above example illustrates how roles enable run-
time type enhancements. The second part of this sec-
tion focuses on another benefit of roles and collabo-
rations, namely reuse. In particular, we show how the
Composite design pattern (Gamma et al., 1995) can
be represented as a reusable collaboration.

Expressed in terms of roles, the pattern essen-
tially consists of a parent role and a child role (Riehle,
1997). Let us define a collaboration similar to that of
Listing 5 with two roles parent and child provid-
ing the functionality of a composite, that is, methods
addChild, removeChild, etc. Having exactly one
instance of each role in the collaboration would im-
ply dealing with a new collaboration instance for each



parent-child relation between two objects. As a more
convenient solution, we propose role mappers, helper
objects creating a new role instance whenever a new
core object requires a certain role. Before delving into
details of its implementation, Listing 7 shows how to
use the Composite collaboration.

1 class Figure {
2 var bgColor = white
3 }
4 class BorderFigure extends Figure {
5 var borderColor = black
6 }
7 class TextFigure extends Figure {
8 var text = ""
9 }

10

11 val f1 = new Figure
12 val f2 = new TextFigure
13 val f3 = new BorderFigure
14 val f4 = new TextFigure
15

16 val c = new Composite[Figure]{}
17 implicit def figure2parent(f: Figure) =
18 f as c.parent
19 implicit def figure2child(f: Figure) =
20 f as c.child
21

22 f1.addChild(f2)
23 f1.addChild(f3)
24 f3.addChild(f4)
25

26 f1.getChild(0) // f2
27 f4.getParent // f3

Listing 7: With the Composite collaboration, figures can be
treated as members of a composite without containing the
implementation of the pattern.

In contrast to Listing 2, the figure classes do not
contain any source code for figures being a composite
(lines 1 to 9). Instead, we instantiate the Composite
collaboration in line 16 and parametrize it with the
desired type of core objects. To enhance the readabil-
ity of the following code, two implicit conversions
are defined in lines 17 and 19. They cause figures
to be converted into figures playing either the par-
ent role or the child role. Hence, the figures can be
used as if they contained composite members, such
as addChild. Alternatively, we could also use the
as operator explicitly, for instance, writing (f4 as
c.child).getParent in line 27.

Contrary to the thesis supervision example, there
exist an arbitrary number of instances of each role
type in the Composite collaboration. Instead of in-
stantiating roles statically as in Listing 5, there are
two role mappers parent and child. A role map-
per deals with the binding between core objects and
role instances, creating new role instances on demand
and reusing existing ones for already known core ob-

jects. Similarly to a role, a role mapper provides a
playedBy method. Hence, using the same syntax as
for roles with a fixed number of instances per col-
laboration, role mappers allows for arbitrary many of
them. Whether to use roles or role mappers is a design
decision of collaboration developers.

5 RELATED WORK

There are a couple of other interesting approaches
towards implementing roles. The Role Object pat-
tern (Bäumer et al., 1997) describes a design that
splits one conceptual object into a core object and
multiple role objects, each enhancing the core ob-
ject for a different context. Core classes and role
classes extend a common superclass that clients deal
with. Clients add (remove) roles to (from) a core ob-
ject by calling appropriate methods on it and pass-
ing a role descriptor as argument. We developed the
ideas of the Role Object pattern focusing on two ma-
jor drawbacks: first, clients can only dynamically de-
tect if a core object provides a certain role and if
so, must down-cast the role object before invoking
role-specific methods. Hence, instead of having static
type safety, programmers need to deal with runtime
checks. Second, the role object pattern suffers from
the problem of object schizophrenia; thus, clients
must pay attention to not rely on object identity.

Steimann proposes two independent type hierar-
chies, one for classes (called natural types) and one
for role types, and presents a role-oriented modeling
language formalizing his approach (Steimann, 2000).
We do not adopt this idea mainly for pragmatic rea-
sons, since its realization in an existing programming
language demands substantial changes to the type sys-
tem. Also, two strictly separated type hierarchies con-
tradict one of the properties of roles in (Steimann,
2000), namely roles playing roles.

A recent and very inspiring work on roles is Ob-
jectTeams/Java (Herrmann, 2007). This is an exten-
sion of Java adding first-class support for roles, role
types, and collaborations (called teams). Collabora-
tions are represented as special classes, team classes,
whose inner classes are considered to be role types.
The problem that role objects do not directly conform
to the type of their core objects is solved by transla-
tion polymorphism, an implicit type-safe conversion
between role instances and their core instances (Her-
rmann et al., 2004).

Roles can also be realized with aspect-oriented
programming (Kiczales et al., 1997). Kendall
analyzes how to implement role models with
aspects and compares it with object-oriented ap-



proaches (Kendall, 1999). In (Hannemann and
Kiczales, 2002), design patterns are implemented
with AspectJ, leading to similar benefits as our
approach, namely reusability and better separation of
concerns.

6 CONCLUSIONS

In this paper we propose a programming technique
that enables expressing roles and collaborations. It is
lightweight in the sense that no changes to the under-
lying language are necessary. Instead, dynamic prox-
ies solve the problem of representing multiple objects
as one compound object. Our approach allows to
widen the set of members of an object at runtime, or in
other words, to dynamically augment its type. Never-
theless, user code can be statically type-checked. We
provide a Scala library as proof-of-concept and show
how extracting concerns into collaborations supports
reuse.

Future work will include applying our approach to
a larger project in order to verify its usefulness and
gain more insight about roles in programming lan-
guages. Another open task is a role-based library of
reusable implementations of design patterns and other
recurring object collaborations. Moreover, other role
features should be investigated further, such as roles
restricting access to its core object and restrictions on
the sequence in which roles may be acquired and re-
linquished.

ACKNOWLEDGMENTS

We would like to thank Prof. Uwe Aßmann for
inspiring this work and the anonymous reviewers for
their comments and suggestions.

REFERENCES

Bäumer, D., Riehle, D., Siberski, W., and Wulf, M. (1997).
The Role Object pattern. In Proceedings of the Con-
ference on Pattern Languages of Programs (PLoP
’97).

Gamma, E., Helm, R., Johnson, R., and Vlissides, J. (1995).
Design patterns: Elements of reusable object-oriented
software. Addison-Wesley Longman Publishing Co.,
Inc., Boston, MA, USA.

Guarino, N. (1992). Concepts, attributes and arbitrary re-
lations: some linguistic and ontological criteria for
structuring knowledge bases. Data Knowl. Eng.,
8(3):249–261.

Hannemann, J. and Kiczales, G. (2002). Design pattern
implementation in Java and AspectJ. SIGPLAN Not.,
37(11):161–173.

Harrison, W. (1997). Homepage on subject-
oriented programming and design patterns.
http://www.research.ibm.com/sop/sopcpats.htm.

Herrmann, S. (2007). A precise model for contextual roles:
The programming language ObjectTeams/Java. Ap-
plied Ontology, 2(2):181–207.

Herrmann, S., Hundt, C., and Mehner, K. (2004). Transla-
tion polymorphism in Object Teams. Technical report,
TU Berlin.

Kendall, E. A. (1999). Role model designs and implemen-
tations with aspect-oriented programming. SIGPLAN
Not., 34(10):353–369.

Kiczales, G., Lamping, J., Mendhekar, A., Maeda, C.,
Lopes, C. V., Loingtier, J.-M., and Irwin, J. (1997).
Aspect-oriented programming. In Proceedings of the
European Conference on Object-Oriented Program-
ming (ECOOP 1997), pages 220–242.

Kristensen, B. B. and Osterbye, K. (1996). Roles: concep-
tual abstraction theory and practical language issues.
Theor. Pract. Object Syst., 2(3):143–160.

Object Management Group OMG (2007). OMG Uni-
fied Modeling Language (OMG UML), superstruc-
ture, v2.1.2.

Odersky, M. (2008). Scala Language Spec-
ification. Version 2.7, http://www.scala-
lang.org/docu/files/ScalaReference.pdf.

Odersky, M., Spoon, L., and Venners, B. (2008). Program-
ming in Scala, A comprehensive step-by-step guide.
Artima.

Reenskaug, T., Wold, P., and Lehne, O. A. (1996). Work-
ing with Objects, The OOram Software Engineering
Method. Manning Publications Co.

Riehle, D. (1997). Composite design patterns. In OOPSLA
’97: Proceedings of the 12th ACM SIGPLAN confer-
ence on Object-oriented programming, systems, lan-
guages, and applications, pages 218–228, New York,
NY, USA. ACM Press.

Riehle, D. (2000). Framework Design: A Role Modeling
Approach. PhD thesis, ETH Zürich.

Smaragdakis, Y. and Batory, D. (2002). Mixin layers: an
object-oriented implementation technique for refine-
ments and collaboration-based designs. ACM Trans-
actions on Software Engineering and Methodology
(TOSEM), 11(2):215–255.

Steimann, F. (2000). On the representation of roles
in object-oriented and conceptual modelling. Data
Knowledge Engineering, 35(1):83–106.


