
Context2Name: A Deep Learning-Based
Approach to Infer Natural Variable Names
from Usage Contexts

Rohan Bavishi and Michael Pradel and Koushik Sen

Technical Report TUD-CS-2017-0296-1

TU Darmstadt, Department of Computer Science

March, 2018

Context2Name: A Deep Learning-Based Approach to Infer
Natural Variable Names from Usage Contexts

Rohan Bavishi
EECS Department

University of California, Berkeley,
USA

Michael Pradel
Department of Computer Science

TU Darmstadt, Germany

Koushik Sen
EECS Department

University of California, Berkeley,
USA

ABSTRACT

Most of the JavaScript code deployed in thewild has beenminified, a
process in which identifier names are replaced with short, arbitrary
and meaningless names. Minified code occupies less space, but
also makes the code extremely difficult to manually inspect and
understand. This paper presents Context2Name, a deep learning-
based technique that partially reverses the effect of minification
by predicting natural identifier names for minified names. The
core idea is to predict from the usage context of a variable a name
that captures the meaning of the variable. The approach combines
a lightweight, token-based static analysis with an auto-encoder
neural network that summarizes usage contexts and a recurrent
neural network that predict natural names for a given usage context.
We evaluate Context2Name with a large corpus of real-world
JavaScript code and show that it successfully predicts 47.5% of all
minified identifiers while taking only 2.9 milliseconds on average to
predict a name. A comparison with the state-of-the-art tools JSNice
and JSNaughty shows that our approach performs comparably in
terms of accuracy while improving in terms of efficiency. Moreover,
Context2Name complements the state-of-the-art by predicting
5.3% additional identifiers that are missed by both existing tools.

1 INTRODUCTION

Developers invest a significant portion of their time in reading
and understanding code [35]. This is because programmers need
to periodically review their code for defects, to look for regions of
code to optimize, extend existing functionality or simply increase
their knowledge base [5]. The developer community has come up
with various guidelines and styles to be followed while writing
programs that can potentially reduce the comprehension overhead.
One widely accepted guideline is to use meaningful variable and
function names. Ideally, a name should capture its semantic function
in a program, effectively acting as an abstraction that developers
can use to aid their understanding [16].

In the same vein, however, variable and function names when
deliberately designed poorly, can provide a layer of obfuscation that
discourages review and inspection. Combined with the removal of
formatting, such as indentation and white-spaces, while retaining
functionality, can make a program extremely difficult to read for a
developer. Code with non-meaningful identifier names is particular
common for real-world JavaScript, where most developers apply
minification before shipping their code. This process replaces all
local identifier names with short, arbitrary, and meaningless names.
A number of publicly available tools automate minification byman-
gling local names into short, cryptic ones, and by aggressively
reusing names in different scopes. The resulting JavaScript files are
smaller and thus reduce the download time of, e.g., client-side web

application code. In addition, some website might wish to conceal
the meaning of the code to protect their intellectual property or to
hide their malicious intent.

Minification tools usually produce source-maps that map various
elements in the minified code back to their original counterparts.
Unfortunately, in most cases source-maps are available only to the
authors of the JavaScript code as they are not shipped along with
the source. To enable external reviewing and security analysis, it is
important to develop techniques that attempt to recover the origi-
nal source code from its minified version, primarily by renaming
identifiers to more meaningful names.

This paper addresses the challenge of inferring natural variable
names in minified code through deep learning. The key idea in our
approach is to capture the syntactic usage context of a variable
or function across a JavaScript program and to predict a natural
name from this context. To gather usage contexts, we use a light-
weight technique that views code as a sequence of lexical tokens
and extracts sequences of tokens surrounding each use of a variable.
We then use these sequences to train a recurrent neural network
(RNN) [20] that predicts a natural identifier for the given usage con-
text. Since these sequences can be arbitrarily long, we use a separate
auto-encoder neural network to generate embeddings, which are
much smaller in dimensionality, and retain the key features that are
sufficient to categorize usage contexts. The RNN used for prediction
can be trained much more efficiently with these embeddings.

To train our Context2Name approach, we leverage the huge
amount of JavaScript code that is available online. Machine learning
techniques exploiting this availability of source code have been
used to solve a variety of development tasks, such as code com-
pletion [32], fixing syntactic errors [18], code clone detection [40],
malware analysis [14], and even generating programs with spe-
cific constraints [34]. Deep Learning [22] is a fast-growing field
in machine learning that has been very successful in natural lan-
guage tasks, such as completion, translation and summarization.We
show that this effectiveness propagates to the problem of inferring
meaningful variable names as well.

We evaluate our technique on a large, publicly available corpus of
JavaScript source code, wherein Context2Name is able to recover
47.5% of all minified identifiers exactly, i.e., our tool predicts the
same name that the authors of the original programs had in mind.
We also show that our approach is practical. It takes an average of
2.9 milliseconds to predict a name, or 110.7 milliseconds to process
a file, on average.

A comparison with the state-of-the-art tools JSNice [31] and
JSNaughty [38] shows that our work achieves comparable accu-
racy while improving in efficiency. Evaluating all tools on the same

1

data set, along with a reasonable time limit for processing, Con-
text2Name is able to recover about as many identifiers as JSNice
and 8.1% more identifiers than JSNaughty. The main contribution
of our work is the conceptually much simpler approach that will be
easier to adapt to another programming language than JSNice. The
reason is that our work does not perform any program analysis for
feature extraction, but instead relies in neural networks to learn
which parts of a token stream are relevant for predicting natural
names.

In summary, this paper contributes the following:

• A deep learning-based framework to recover natural identi-
fier names from minified JavaScript code.
• A technique for computing vector embeddings of the us-
age contexts of a variable. The technique makes minimal
assumptions about the underlying programming language,
and can be adapted to other languages and usage scenarios.
• Empirical evidence that the approach exactly recovers 47.5%
of all minified names in a large, publicly available corpus of
JavaScript code, which is comparable to existing approaches.
The average time for processing each file is also well under
a second.

The implementation of our approach, as well as all data to repro-
duce our results, will be made available.

2 OVERVIEW AND EXAMPLE

This section presents an informal outline of our approach and
illustrates the main ideas with an example. The example is a piece
of JavaScript code, shown in the upper-left corner of Figure 1. The
code has been minified with UglifyJS, a popular minification tool
that replaces all local variable names with short, meaningless, and
arbitrarily chosen names. All globally visible names, such as http,
and property names, such as responseText, are not minified to
ensure that the code preserves the semantics of the original code.
In practice, UglifyJS also removes unnecessary white-space and
indentation, which we preserve here for clarity.

The minification makes it difficult to understand the meaning of
individual variables and the overall purpose of the code. The goal
of Context2Name is to recover meaningful and natural names
that help developers not familiar with the code to reason about it.
Ideally, the recovered names are those chosen by the developers in
the original code. In general, predicting the exact same names as in
the original code is not always possible. The reason is that, even
though developers generally tend to write regular and “unsurpris-
ing” code [19], developers do not always choose the most natural
identifier name, but sometimes choose a semantically equivalent
name or a slightly misleading name. To achieve the goal of helping
developers understand the code despite minification, it is therefore
sufficient to recover some meaningful name, not necessarily the
original name, for each local variable.

For the example, the upper-right corner of Figure 1 shows the
code with names recovered by Context2Name. Five out of the
six local names have been recovered exactly, i.e., as in the original
code: req, url, method, async, and body. The remaining name,
response, is also very similar in spirit to the name callback that
was used by the author of the original code. Overall, the recovered

code very much reflects the developer’s intention, making it easy
for another developer to reason about the code.

The key insight used by our approach to recover names is that
the code surrounding different occurrences of a local variable of-
fers a lot of information about the meaning of the variable. For
example, the tokens surrounding e in Figure 1 include the key-
word function, the global function name http, and the prop-
erty names open, oneadystatechange, send, and responseText.
An average JavaScript developer can infer from this information
that e is likely to be an XMLHttpRequest object. A more difficult
case is the minified name i. Its surrounding tokens include if,
onreadystatechange, and responseText, which at first glance do
not reveal much about the purpose of i. A skilled developer who
has used XMLHttpRequest may learn from the fact that i is the
third argument of open and that onreadystatechange is close to
the if condition where i evaluates to true, while responseText is
close to another if condition that involves i and a negation. All
these features suggest that i toggles the asynchronous behavior of
an HTTP requests.

Our technique essentially simulates this semantic reasoning
based on prior knowledge of JavaScript code. However, instead
of relying on an expert JavaScript developer, we exploit the power
of advanced machine learning techniques and the availability of
large corpora of code. The approach identifies regularities in the
way identifier names occur in real code and uses these regularities
to predict meaningful names.

Figure 1 illustrates the different steps taken by Context2Name
during this process:

(1) At first, a simple token-based analysis of the code extracts
usage contexts for every minified name. Specifically, the
analysis extracts one usage context for each occurrence of
the name. The usage context consists the sequence (of length
3 in this case) of lexical tokens before and after the minified
name.

(2) The next step converts the set of usage contexts of a name
into a vector representation. This representation is based
on a standard one-hot encoding and yields a sparse, binary
vector, where most elements are zero and only few elements
are one.

(3) To ensure the scalability and efficiency of the overall ap-
proach, the next step converts the sparse vectors into a dense
vector representation. This step is fully automated by using
a sequence auto-encoder [13], i.e., an semi-supervised neural
network that searches an efficient encoding.

(4) The dense vector representations are fed into a supervised
machine learning model, a recurrent neural network (RNN).
We train this model to predict a ranked list of meaningful
names for a given vector representation of the usage contexts
of a variable. A key insight is that the prediction depends
only on the usage contexts of the variable, and not on the
minified name.

(5) Finally, Context2Name greedily selects for each minified
variable the name predicted with maximum probability and
outputs the code with recovered names.

An important conceptual benefit of Context2Name over the
state of the art technique JSNice is that our approach makes very

2

Minified code:

Usage contexts: Sparse vector
representation:

Dense vector
representation:

 s = JSON.stringify(s);
 e.open(t, n, i);
 if (i) {
 e.onreadystatechange = function() {
 if (e.status == 200) {

 }
 }
 }
 e.send(s);
 if (!i) f(e.responseText);
}

Code with recovered names:

 body = JSON.stringify(body);
 req.open(method, url, async);
 if (async) {
 req.onreadystatechange = function() {
 if(req.status == 200) {

 }
 };
 }
 req.send(body);

}

Name "e":

- stringify ID ; open ID ,
- if ID { onreadystatechange = function
- ...

Name "n":

- open ID , , ID ;
- ...

Name "e":
[0, 0, 0, 1, 0, ..., 0, 0, 1, 0, 0]

Name "n":
[0, 1, 0, 0, 0, ..., 0, 0, 0, 0, 1]
...

Name "e":
[0.23, 0.42, 0.51, ...]

Name "n":
[0.11, 0.65, 0.61, ...]
...

Ranked list of
predicted names:
Name "e":
req, request, xhr, ...

Name "n":
url, address, url_, ...
...

Token-based
analysis

One-hot
encoding

Auto-
encoder

RNN

Most likely
names

- PAD function http , ID ,

- http ID , , ID ,

function http(e, n, t, s, i, f) {

 f(e.responseText);

function http(req, url, method, body, async, response){

 response(req.responseText);

 if (!async) response(req.responseText);

Figure 1: Overview of the Context2Name approach.

little assumptions about the language of the analyzed programs.
Concretely, our approach abstracts program code into a sequence
of tokens and assumes to have a way to identify occurrences of
the same local variable. In addition to these assumptions, JSNice
extracts various hard-coded kinds of relations between program
elements from the code, such as between different identifiers in-
volved in the left-hand side and right-hand side of assignments.
These relations are specific to the analyzed language, making it non-
trivial to adapt JSNice to a different programming language. Instead,
Context2Name leaves the task of identifying relevant structural
relations between program elements to a machine learning model,
making it easier to adapt the approach to other languages.

3 APPROACH

In this section, we provide the technical details of our approach. The
key idea is to approximate the semantic meaning of a variable or
function using a sequence of lexical tokens surrounding its different
points of usage in the code. We formally describe this notion of a
usage summary in Section 3.1. Sections 3.2 and 3.3 then describe two
neural networks: One network to reduce the usage summary into
an efficient vector representation, and another network to predict
a suitable name for a given usage summary. Finally, Section 3.4
presents how to recover all minified names of a program while
preserving the semantics of the code.

3.1 Extracting Usage Summaries

The input to Context2Name is the source code of a minified pro-
gram. As a first step, the approach is to extract a usage summary
for a each local variable or locally defined function. The usage

summary will be used by later steps of the approach to predict a
suitable name for the variable. A usage summary is composed of
the different contexts in which an identifier is used. To extract the
usage summary, we view the source code as a sequence of lexical
tokens T =< t0, t1, · · · , tlen >. We drop some tokens, specifically
dot punctuators and round parentheses, from T as we did not find
them to be particularly useful. Let N = {n1,n2, · · · ,nk } ⊆ T be
the set of all local names in the code. Because a single name may
independently occur in multiple scopes, variables or functions in
different scopes having the same name have separate entries in N .

For constructing the context of each occurrence of an identifier,
we define a helper function. Let T[k] denote the kth token in the
sequence T . We define a token projection function дT for T as
follows:

дT (k) =

T[k] if 0 ≤ k ≤ len ∧ T[k] < N

ID if 0 ≤ k ≤ len ∧ T[k] ∈ N

PAD if k < 0
PAD if k > len

(1)

The function replaces all local names in the code with a special
ID token. The reason is that these names are minified in the given
code and therefore do not contribute any semantic information.
Also note that дT returns the special padding token PAD when its
argument is out of range. This case is useful for extracting the
context of tokens that appear close to the beginning and end of the
analyzed token sequence T .

Based on the helper function дT , we now define the context of
an occurrence of a local name. For each occurrence of a local name
in T , we extract the q preceding tokens and the q following tokens

3

into a the context c(t) of a token t in T :
c(t) =<дT (k − q), · · · ,дT (k − 1),

дT (k + 1), · · · ,дT (k + q) > if t = T[k]
(2)

This local context captures the usage of a name at a particular code
location. The hyper-parameter q can be configured to adjust the
number of tokens extracted as context. We use q = 5 as a default in
our evaluation.

Finally, for each local name n, we concatenate the contexts for
different usages of n in the code into a single sequence of tokens,
which we call the usage summary of the name. We use up to
l contexts per name to construct the usage summary, where l is
another hyper-parameter that can be configured to adjust the size
of summaries. If less than l contexts are available for a particular
name, we pad the sequence with the special PAD tokens. If more
than l contexts are available, we use the first l contexts. We use
l = 5 as a default in our evaluation. We formally define the usage
summary as a function U(n) where n ∈ N as follows (◦ is the
sequence concatenation operator):

U(n) = c(t1) ◦ c(t2) ◦ · · · ◦ c(tl)

where ti ∀1 ≤ i ≤ l are occurrences of n (3)

For our running example from Section 2, the lower left corner
of Figure 1 show the usage contexts of variables e and n (with
parameter q = 3 for space reasons).

The set of tokens in the usage contexts, along with their position
relative to the variable occurrences, captures the syntactic context
of the variable usages. The intuition behind Context2Name is that
this context is often sufficient to infer the meaning of the variable.

3.2 Learning Embeddings for Usage Summaries

After extracting usage summaries for each local name in the code,
the next step is to summarize them into an efficient vector repre-
sentation called embedding. The motivation for this step is twofold.
First, to benefit from a machine model that predicts likely variable
names, we need to convert the information extracted from source
into a format suitable for machine learning. The neural network
model we use here, as many other machine learningmodels, expects
vectors of real numbers as its input. Second, the usage summaries
are highly redundant, e.g., because the same kind of token occurs
many times and because subsequences of tokens occur repeatedly.
To ensure the scalability and efficiency of the overall approach, we
compress usage summaries into an efficient vector representation.

One option to convert usage summaries into a compact vec-
tor representation would be to manually define a set of features
and to create vectors that describe the presence or absence of these
features. However, coming upwith a suitable set of features that cap-
ture the semantics of identifier usages in JavaScript would require
significant manual effort. Moreover, manually designed features
would tie our approach to a specific programming language, and
require additional manual effort to adapt it to another language.

Instead of manually defining how to compress the usage sum-
maries, we use an auto-encoder. An auto-encoder is a supervised
neural network model that learns to compress a given vector while
preserving as much of the original information as possible. We train
a sequence auto-encoder [13] that compresses each context in a

Figure 2: Auto-encoder network that computes an embed-

ding for each context using two RNNs.

usage summary into a compact vector, allowing us to represent the
usage summary as the concatenation of these compact vectors.

The first step is to define an input vocabulary Vinp of tokens
that the network recognizes. We construct the input vocabulary
by picking the most frequent |Vinp | tokens (plus the special PAD
token) across our training set of code. In our experiments, |Vinp | =
4, 096. All tokens that are not frequent enough to occur in Vinp
are represented by a special UNK token. The input vocabulary is
then used to convert the tokens in the usage summary to their
one-hot representations, i.e., binary vectors of size |Vinp | with the
ith bit set for the ith token in Vinp . The size sc of the one-hot
representation of the context c(t) of a token t is sc = |Vinp | · q · 2
because the context contains q tokens before and q tokens after t ,
each represented by |Vinp | bits. For our running example, Figure 1
illustrates the one-hot vector representation of the usage contexts
of variables e and n.

The one-hot representation of contexts is highly redundant and
we next describe how to compress it using a LSTM based sequence
auto-encoder. The auto-encoder can be thought of as two jointly
learned functions. An encoder function enc : {0, 1}sc → RE

[0,1],
which maps the one-hot representation of a context to a real-valued
vector of length E, and a decoder function dec : RE

[0,1] → R
sc
[0,1]

that maps the real-valued vector back to a binary vector of the
original length. The notation RE

[0,1] refers to a vector of length E

of real-valued numbers in the range [0, 1]. The goal of training the
auto-encoder is to minimize the difference between dec(enc(c)) = c̃
and the original context vector c . The two functions are trained
in tandem to minimize this difference. Once trained, we use the
intermediate vector returned by enc for a given context c as the
embedding for c . That is, the auto-encoder compresses the input
vector corresponding to a context into an embeddings of length E,
where E is a hyper-parameter of our approach.

Our implementation of the auto-encoder consist of two jointly
trained networks that represent the functions enc and dec . The
encoder network consists of a single LSTM layer (a class of re-
current neural network (RNN) models that maintains an internal
hidden state and therefore is particularly well-suited to processing

4

Figure 3: Recurrent neural network to predict likely variable

names for a given usage context.

sequences of inputs) with an hidden state of size E, which also
corresponds to the size of the embedding vectors. The encoder net-
work takes a sequence of 2 · q one-hot encoded vectors, denoting a
context, and produces an embedding vector of length E. The em-
bedding vector is the final hidden state of the LSTM. We use E = 80
as a default value in our implementation. The decoder network
consists of a layer that repeats the input 2 · q times (the number of
tokens in the context), and a single LSTM layer with a hidden state
of size |Vinp |. Figure 2 provides an illustration of this network.

In summary, we use the encoder component of this network to
convert a usage summary for a name n ∈ N into a sequence of
embeddings:

< enc(c1), enc(c2), · · · , enc(cl) >

where U(n) = c1 ◦ c2 ◦ · · · ◦ cl
(4)

For the running example, the “Dense vector representation” part of
Figure 1 shows the real-valued vector that results from concatenat-
ing the embeddings of each context in the usage summary of each
variable.

3.3 Predicting Names from Usage Summaries

Based on the compactly represented usage summaries, we train a
second neural network to predict the name of a variable given its
usage summary. The intuition behind this idea is that the way a
variable is used in code implicitly conveys sufficient knowledge
about its meaning to predict a suitable name. We first define an
output vocabulary Vout to choose names from. For our experi-
ments, the vocabulary contains the 60, 000 most frequent names
encountered in our code corpus.

We then learn a functionP : RE×l
[0,1] → R

|Vout |

[0,1] . Given a sequence
of embeddings that represent a usage summary as in Equation 4,
we first reverse it as suggested in [36], so the embeddings con-
structed out of PAD tokens come first. We then apply the function
which yields a probability distribution over the output vocabulary.
This probability distribution can be interpreted as a ranked list of
predicted names.

To learn function P, we use a recurrent neural network (RNN),
i.e., a class of neural models that maintains an internal memory
and therefore is particularly well-suited to processing sequences
of inputs. The RNN we use consists of a single long short-term

Algorithm 1 Semantics-Preserving Name Recovery

1: procedure PredictNames(minifiedCode)
2: recoveredCode← copy(minifiedCode)
3: minNames← GetMinifiedNames(minifiedCode)
4: pQueue← new PriorityQueue()
5:
6: for all minName ∈ minNames do
7: (pred, prob)← NextPrediction(minName)
8: pQueue.push((prob, minName, pred))
9: end for

10:
11: while pQueue , � do

12: elem← pQueue.pop()
13: minName← elem.minName
14: pred← elem.pred
15: if NoConflicts(minName, pred) then
16: Replace minName with pred in recoveredCode
17: else

18: (pred, prob)← NextPrediction(minName)
19: pQueue.push((prob, minName, pred))
20: end if

21: end while

22:
23: return recoveredCode
24: end procedure

memory (LSTM) layer with a hidden state of size h (h = 3, 500
in our experiments), followed by a softmax layer, which returns
a probability distribution. Figure 3 provides an illustration of this
network.

The size of the output vocabularyVout directly corresponds to
the range of names our network can output as a prediction. That
is, the larger the vocabulary, the higher is the accuracy of name
recovery. The trade-off, however, is that the network size increases
linearly with |Vout |. The vocabulary size we choose for our exper-
iments (|Vout | = 60, 000) strikes a balance between performance
and precision.

In Figure 1, the lower right part shows the names predicted by
Context2Name for variables e and n. As in this example, several
of the top-ranked names may convey the semantics of the minified
variable.

3.4 Semantics-Preserving Recovery of Names

Our RNN-based predictor outputs a ranked list of possible names
for each minified name. The final step is to map each minified
name to a single predicted name. This mapping must preserve the
semantics of the minified program. Specifically, the same name
cannot be mapped as predictions to two different minified variables
in the same scope, the predicted name cannot be a keyword, and the
predicted name cannot overshadow a name from its parent scope
if the name is used in one of its child scopes.

To recover names while respecting these constraints, we com-
pose the ranked predictions for different variables into a single list
and then use this list to greedily assign predictions. Algorithm 1
summarizes our approach for recovering names in a consistent and

5

semantics-preserving manner. The procedure PredictNames takes
the minified code as input, makes a copy (line 2), and extracts all the
minified names using the GetMinifiedNames procedure (line 3).
The algorithm then initializes a priority queue, which will use the
probabilities of name predictions, as returned by the RNN, as the
key for sorting in descending order. The priority queue essentially
tracks the minified names yet to be recovered. Lines 6-9 initialize
the priority queue with the top predictions for every name along
with their corresponding probabilities. To this end, we use a proce-
dure NextPrediction, which for a given minified name, returns
a pair where the first element is the next best prediction after the
previous invocation for the same name, and the second element is
its corresponding probability.

Lines 11-21 greedily replaces all minified names with predicted
names, as provided by the priority queue, until all names have been
replaced, i.e., until the queue becomes empty. At each iteration of
the while loop on line 11, the algorithm pops the element with the
highest probability from the priority queue (lines 12-14). Then, at
line 15, a procedure NoConflicts checks whether the algorithm
can replace the minified name with the predicted name without
creating conflicts. Specifically, we check whether the name pre-
dicted has not already been assigned to a different variable in the
same scope, is not a keyword, and does not overshadow a replaced
name or global name of the parent scope that is referenced in a
child scope. If the check passes, the algorithm replaces the minified
name with the prediction in recoveredCode. Otherwise, we take
the next prediction, and add it to the priority queue. After the loop
ends, the algorithm finally returns the recovered code file.

For our running example, the upper right part of Figure 1 shows
the code with the names inferred by Context2Name. Even though
only five out of the local six names are predicted exactly as in the
original code, the code is much more readable than its minified
version.

4 EVALUATION

We have implemented Context2Name in Python using Keras1 as
the deep learning framework. The implementation has 397 lines
of Python code. We now present an experimental evaluation of
our approach to demonstrate its effectiveness and applicability.
Specifically, we attempt to answer the following research questions:
RQ1: How effective is our approach at predicting natural names

for minified variables and function names in real-world
JavaScript code?

RQ2: How does our approach compare to the current state-of-the-
art, specifically JSNice [31] and JSNaughty [38]?

RQ3: Is the approach efficient enough to be practical, and does it
scale well to large programs?

To answer these questions, we evaluate Context2Name with
a large corpus of real-world JavaScript files. The corpus consist of
disjoint sets of training files and validation files. For training, we
minify the training files with the popular UglifyJS2 tool and then
train the approach to recover the original names. For validation, we
give minified versions of the validation files to Context2Name and
then measure the accuracy of recovering the original, unminified

1https://keras.io/
2Version 3.1.9, run with the -m (mangler) parameter

names. Although we use UglifyJS in our experiments, our tech-
nique is agnostic of the minifier being used, as long as it does not
restructure or remove code. Specifically, our techniques works for
all minifiers that only modify variable names, and that remove
white-space and other terminals, such as semi-colons and commas.
It is important to note that this accuracy metric gives a lower-bound
of the effectiveness of any technique, as it is possible that the pre-
dicted names may be similar, or even better than the original names.
A qualitative evaluation involving the manual inspection of sug-
gested names is beyond the scope of this work.

4.1 JavaScript Corpus

We constructed our training and testing corpus using a publicly
available data set3 of JavaScript programs [30]. The data set con-
tains 150,000 non-minified JavaScript files: 100,000 files marked
for training and 50,000 files marked for testing. Before our exper-
iments, we cleaned the corpus by the following procedure: We
removed 3,150 files that are common between the sets of training
and testing files from the training files to ensure that the training
and testing data sets are disjoint. We then removed duplicates from
these sets, followed by the removal of files that cannot be processed
by UglifyJS. Following the setup of the JSNice artifact, we also re-
move files that are very large (more than 131,072 characters) or
that are already (mostly) minified. This is done to ensure that large
or minified files do not skew the results. For fairness, we also re-
move files that cannot be processed by JSNice or JSNaughty due to
implementation-level bugs. This entire process reduces the number
of training and testing files to 64,750 and 33,229, respectively. A
possible alternative to using fixed training and testing sets is k-fold
cross validation. We follow the experimental setup of JSNice [31]
and JSNaughty [38], which uses fixed training and testing sets.

We present some statistics about the testing corpus. The number
of lines of code in the original source files (excluding comment
and blank lines) in the validation corpus ranges from 1 to 7,239
(mean 169.2, median 61). The files contain between 0 to 1,388 unique
(per-file, per-scope) local variable names (mean 38.4, median 12),
between 1 to 1,401 unique variables (local + global) (mean 45.2,
median 18), between 0 to 6,139 (mean 160.1, median 40) usages of
local variable names, and between 1 and 6,208 (mean 191.5, me-
dian 61) usages of all variable names, i.e., both local and global
names. Across all files, the number of unique local variable names
is 1,277,558. The total number of usages of local variable names
is 5,321,106, and the total number of usages of all variable names
(global + local) is 6,364,368.

4.2 Training

For training Context2Name, we build usage summaries for all
minified names in the minified files in the training set, and then
train our model by using the original names provided by the source
maps as the ground-truth. Across all training files, the total number
of unique local variable names is 2,551,118 (i.e., the size of N),
which also corresponds to the number of usage summaries used for
training. When collecting unique local variable names, we exclude
any names not minified by UglifyJS to preserve the semantics of the
code, such as references to built-in functions and global variables.
3http://www.srl.inf.ethz.ch/js150.php

6

https://keras.io/
http://www.srl.inf.ethz.ch/js150.php

Parameter Value

No. q of neighbours used on either side in contexts 5
No. l of contexts used in usage summaries 5
Input vocabulary size |Vinp | 4,096
Output vocabulary size |Vout | 60,000
Embedding size E 80
Hidden layer size h 3,500

Table 1: Hyperparameters and values for the evaluation.

|Vinp | Percentage of unique
tokens covered

Percentage of to-
kens covered

500 0.09 93.39
1,000 0.19 94.53
2,000 0.38 95.46
3,000 0.56 95.92
4,000 0.75 96.23
4,096 0.77 96.26

5,000 0.94 96.46
6,000 1.13 96.64
7,000 1.32 96.79
8,000 1.50 96.91
9,000 1.69 97.02
10,000 1.88 97.11

Table 2: Impact of input vocabulary size |Vinp |. The bold line

is our default setting.

4.3 Parameter Selection

The effectiveness and efficiency of Context2Name depends on
several hyperparameters. The values of these hyperparameters
during the evaluation is provided in Table 1. We found these values
to strike a balance between the size of the network and the amount
of information used to predict names. In particular, the vocabulary
sizes |Vinp | and |Vout | need to be set carefully. Large vocabularies
may capture a lot of information and allow many more names to
be predicted, but may severely affect performance. We select sizes
that cover the majority of the tokens in the training set.

We construct both vocabularies using the training data set only,
by picking the |Vinp | most frequent tokens across all usage sum-
maries for the input vocabulary, and the |Vout | most frequent
names for the output vocabulary. A key finding is that a relatively
small number of tokens in the input vocabulary accounts for a
significant fraction of all tokens across all usage summaries. The
reason is that the frequencies of tokens follow a long-tail distri-
bution: Some tokens, such as ID and semi-colons are extremely
frequent, whereas many other tokens, such as application-specific
literal values, occur only rarely. The situation is similar for the
output vocabulary, where a relatively small set of popular identifier
names cover the large majority of all occurrences of identifiers.

Tables 2 and 3 show the impact of different vocabulary sizes.
The middle column in Table 2 compares the relative size of the
input vocabulary to the number of unique tokens (531,943) seen
across all usage summaries in the training set. Note that tokens

|Vout | Percentage of unique
names covered

Percentage of
names covered

1,000 0.40 63.19
5,000 1.99 75.07
10,000 3.97 79.48
20,000 7.95 83.82
30,000 11.92 86.38
40,000 15.89 88.16
50,000 19.87 89.56
60,000 23.84 90.74

70,000 27.81 91.62
80,000 31.79 92.41
90,000 35.76 93.19
100,000 39.74 93.98

Table 3: Impact of output vocabulary size |Vout |. The bold

line is our default setting.

corresponding to minified names are replaced by the special ID
token in usage summaries. The right column in Table 2 shows the
percentage of all tokens, seen across all usage summaries, that are
present in the input vocabulary. The entries in Table 2 suggest that
the input vocabulary, albeit very small in comparison to the set of
all unique tokens, covers a very high fraction of all tokens (96.26%
of the tokens from a total of 127,555,900 tokens for |Vinp | = 4,096).

Table 3 paints a similar picture for the output vocabulary. The
middle column compares the relative size of the output vocabulary
to the number of unique non-minified names (251,663) seen in our
training set, and the right column shows the percentage of all names
covered by the output vocabulary. The entries in bold correspond
to the size we chose (|Vout | = 60,000). The conclusion is the same
as for the input vocabulary: The output vocabulary is small but
sufficiently rich (recognizing 90.74% of the names from a total of
2,551,118 local variables) to perform naming tasks satisfactorily.

4.4 Setup for JSNice and JSNaughty

To compare Context2Name with the state-of-the-art, we train
JSNice and JSNaughty on the same training set as ours, enabling
an apples-to-apples comparison. We use the JSNice artifact4, and
use the same parameters and arguments as suggested in the ac-
companying README file. For prediction tasks, we again use the
same command line arguments as provided in the README, with
an additional parameter to produce a source map from the minified
file to the file recovered by JSNice. We then use this map to compute
the accuracy.

For JSNaughty, we trained both their translation and language
models, as well as the Nice2Predict framework5 [31] on our training
set by following instructions provided by the authors. It is impor-
tant to train a Nice2Predict instance because JSNaughty combines
results from both their models and Nice2Predict to make the final
prediction.

By default, we run each of three tools with a time limit of 10
minutes for processing a file. If a timeout occurs, we assume that
4http://files.srl.inf.ethz.ch/jsniceartifact/index.html
5http://www.nice2predict.org/

7

http://files.srl.inf.ethz.ch/jsniceartifact/index.html
http://www.nice2predict.org/

Predict local
names only

Predict all (local +
global) names

Count each vari-
able once

Local-Once All-Once

Count each occur-
rence of a variable

Local-
Repeat

All-Repeat

Figure 4: Accuracymetrics used for the evaluation.

Metric Context2Name JSNice JSNaughty JSNaughty∞ Baseline

Local-Once 47.5% 48.3% 39.4% 55.3% 0.0%
Local-Repeat 49.8% 55.3% 41.3% 59.2% 0.0%
All-Once 55.4% 56.0% 47.7% 61.9% 15.0%
All-Repeat 58.1% 62.6% 49.3% 65.8% 16.4%

Figure 5: Comparison of accuracy (metrics described in Section 4.5)

for Context2Name, JSNice, and JSNaughty. Baseline represents a

tool which does not predict anything. JSNaughty
∞

refers to the JS-

Naughty without imposing any time limit.

the respective tool failed to recover any names in this file. Imposing
a time limit is reasonable for de-minification tools for two reasons.
First, developers use such tools to save time while inspecting code,
and waiting for a tool to finish defeats this purpose. Second, such
tools usually have a web-interface (both JSNice and JSNaughty
have a web interface) and response times are critical to satisfac-
torily serve a large number of users. We have not yet released a
web interface for Context2Name to maintain anonymity, but will
do so once this work is accepted. In practice, the 10-minute time
limit affects only JSNaughty. For a full comparison, we also run
JSNaughty without any time limit, where it takes over 40 minutes
for some files.

4.5 Evaluation Criteria

The evaluation criterion for assessing the effectiveness of the ap-
proaches is accuracy, i.e, the ability to recover the original names
from minified files. To measure accuracy, we run Context2Name,
JSNice, and JSNaughty on each minified file in the validation cor-
pus, and extract a mapping between the minified names and the
corresponding predictions made by the tools. We then combine this
mapping with the source maps produced by UglifyJS to define a
mapping between the original names and the predicted names. Fi-
nally, we measure accuracy by computing the percentage of original
names that a tool recovers correctly.

There are four variants of the “accuracy” metric, which differ in
subtle ways. The metrics differ in two dimensions, as illustrated in
Table 4. On the one hand, we can measure accuracy either for all
variables and functions in the code, which includes global names,
or only consider local names. Since minifying global names in a file
may break the semantics of the code, minifiers, such as UglifyJS, do
not modify these names. Hence, the task of recovering global names
is trivial, as they are not minified at all. Arguably, both definitions
of accuracy make sense, and therefore we consider both of them.

On the other hand, we can measure accuracy either per variable
or per usage of a variable. For example, if a local variable foo is
referenced three times in the same scope, then the per variable
metric counts the prediction for foo once, whereas the per usage
metric counts the prediction three times. If the variable foo appears
twice in different scopes in the same file, then the per variablemetric
counts the prediction for foo twice. Again, both definitions make
some sense, so we here consider both.

Together, these two dimensions yield four accuracy metrics,
Local-Once, All-Once, Local-Repeat, All-Repeat, as shown in Ta-
ble 4. Metric Local-Repeat can be seen as a weighted computation

of metric Local-Once, in that correctly predicting a name for a
more frequently used variable would give a higher score. Metric
All-Repeat (used by JSNice [31]) allows us to directly gauge the sim-
ilarity between the original, non-minified file and the recovered file.
As a trivial baseline, we also compute a baseline accuracy, which
gives the percentage of global names only. That is, the baseline
accuracy effectively represents the accuracy of a tool that does not
predict any names.

4.6 Results

4.6.1 Accuracy. Addressing RQ1 and RQ2, Table 5 provides the
four accuracy metrics for all the three techniques. The Local-Once
accuracy of Context2Name, i.e., when only unique occurrences
of local variable names are considered, is 47.5%, only 0.8% lower
than JSNice’s accuracy of 48.3%, and 8.1% higher than JSNaughty’s
accuracy of 39.4%. When not imposing any time limit, JSNaughty
performs better and reaches an accuracy of 55.3%. However, this in-
crease comes at a high cost on efficiency (Section 4.6.3), which signif-
icantly reduces the practicability of the tool. Setting a stricter time
limit of only one minute, the Local-Once accuracy of JSNaughty
drops even further to only 8.9%. The main reason for JSNaughty’s
sharp drop in accuracy when imposing a time limit is that it suffers
from an inherent scalability problem, which the authors, on their
GitHub page, attribute to the size of phrase-tables used in predicting
names. For the experiments reported in the JSNaughty paper [38],
the tool was run only on files with 100 lines or less.

4.6.2 Detailed Comparison. We also analyze the relationships
between the sets of names recovered by the three approaches. In
the Venn diagram shown in Figure 6a, each approach is represented
by a colored circle. The percentages inside the colored regions
represent the percentage of local minified names for which the
original names are recovered correctly (i.e., based on the Local-
Once metric). The sizes of the regions also reflect this percentage.
It is easy to verify that the sum of percentages inside every circle is
equal to the Local-Once accuracies presented in Table 5. Across all
files, 5.3% of the total number of unique local variable names are
recovered correctly only by Context2Name, 4.88% only by JSNice
and 4.14% only by JSNaughty. 13.97% of the names are recovered
only by Context2Name and JSNice and 22.42% of the names were
recovered by all three tools. Figure 6b shows the results for running
JSNaughty without any time limit. Again, each tool recovers some
names that the other tools miss. Overall, the two diagrams suggest
that all tools are complementary to each other to some extent.

8

(a) Comparison of predictions by Context2Name, JSNice and JS-

Naughty when a time limit of 10 minutes is imposed.

(b) Comparison of predictions by Context2Name, JSNice and JS-

Naughty when no time limit is imposed.

Thus, it may be possible to build a tool that combines all the three
approaches to yield accuracies upwards of 60%.

4.6.3 Efficiency. To address RQ3 about the efficiency and scala-
bility of Context2Name, we measure the time needed for predict-
ing names. We performed our experiments on a 32-core machine
with four 2.40 GhZ Intel Xeon processors running Ubuntu 16.04.1
64-bit, with 256GB RAM.We trained and hosted our model on a sep-
arate machine with one 4.20 GhZ Intel i7 processor, with one Nvidia
1080Ti GPU, running Ubuntu 16.04.1 64-bit with 48 GB RAM. The
embedding and prediction networks are trained separately, both
for 5 epochs, and the time to train them was 1.5 days and 3 days,
respectively, which is a one-time effort. For prediction tasks, we
developed a client running on the first machine that queries the
model hosted on the second. Our timing therefore is the sum of
processing time on the first machine, and the time taken to query
the model loaded on the GPU.

Table 4 shows the per-file timing statistics. Both Context2Name
and JSNice perform comparably and are able to process most files

Name Min. (ms) Max. (ms) Mean (ms) Median (ms)

Context2Name 0.3 2,557.2 110.7 52.0
JSNice 7.0 13,151.0 270.3 73.0
JSNaughty 1.5 2,489,076.2 64,962.2 20,043.0
Table 4: Timing statistics forContext2Name, JSNice and JS-

Naughty, computed per file in the testing set. The columns

shows theminimum,maximum,mean, andmedian running

time in milliseconds. No time-out is imposed on any of the

tools.

in under half a second, making the techniques good candidates
for online interactive tools. JSNaughty takes an average of 65 sec-
onds. Thus, the improvement in accuracy of JSNaughty comes at a
very significant penalty in efficiency, making it less suitable to be
deployed in an interactive setting.

Overall, the results show that Context2Name performs compara-
bly to the existing techniques with respect to accuracy, and that it
outperforms the existing techniques, in particular JSNaughty, with
respect to running time. Moreover, Context2Name complements
existing techniques by predicting 5.3% of all names that are missed
by both existing tools. These results are particularly remarkable
given that Context2Name does not rely on any kind of manual and
language-specific feature engineering, making it straightforward
to apply the approach to another programming language.

5 RELATEDWORK

5.1 Obfuscation

Program obfuscation has applications in protection of intellectual
property [15], resistance against reverse-engineering and software
tampering [6, 21, 39] as well as watermarking [33]. An obfuscator
is basically a compiler, that takes an input program, and outputs a
semantically equivalent program that is mostly unintelligible to a
third party without access to the source. Barak et al. [8] showed that
obfuscation in general is not realizable. Nonetheless a large body of
work has been published on new techniques for obfuscation [12, 23],
as it has proved to be practically useful.

Obfuscation is an attractive option in the domain of JavaScript
programs as the code is shipped as source, allowing anyone to
view and download the original code of the author. But excessive
obfuscation can be detrimental to performance w.r.t. bandwidth
usage and execution time. Obfuscators that increase the size of the
program, or make it significantly slower are not particularly useful.
Compatibility is also an issue, as many JavaScript programs rely on
external APIs whose usage has to appear in the clear. Minifiers, such
as UglifyJS, are an excellent compromise, as the resultant programs
are much smaller, and variable renaming is a sufficient deterrence
for most adversaries.

5.2 Deobfuscation

Deobfuscation techniques attempt to uncover various aspects of
the semantics of the program, which has applications in reverse
engineering and malware analysis. Most of the proposed techniques
rely on static and dynamic analyses [11, 26, 37], which are more

9

